
Double precision floating-point format 1

Double precision floating-point format
In computing, double precision is a computer numbering format that occupies two adjacent storage locations in
computer memory. A double precision number, sometimes simply called a double, may be defined to be an
integer, fixed point, or floating point (in which case it is often referred to as FP64).
Modern computers with 32-bit storage locations use two memory locations to store a 64-bit double precision number
(a single storage location can hold a single precision number). Double precision floating point is an IEEE 754
standard for encoding binary or decimal floating point numbers in 64 bits (8 bytes).

Floating point precisions

IEEE 754:
16-bit: Half (binary16)
32-bit: Single (binary32), decimal32
64-bit: Double (binary64), decimal64
128-bit: Quadruple (binary128),
decimal128
Other:
Minifloat · Extended precision
Arbitrary-precision

Double precision binary floating-point format
Double precision binary floating-point is a commonly used format on PCs, due to its wider range over single
precision floating point, even if at a performance and bandwidth cost. As with single precision floating point format,
it lacks precision on integer numbers when compared with an integer format of the same size. It is commonly known
simply as double. The IEEE 754 standard defines a double as:
• Sign bit: 1 bit
• Exponent width: 11 bits
• Significand precision: 53 bits (52 explicitly stored)
The format is written with the significand having an implicit integer bit of value 1, unless the written exponent is all
zeros. With the 52 bits of the fraction significand appearing in the memory format, the total precision is therefore 53
bits (approximately 16 decimal digits, ). The bits are laid out as follows:

The real value assumed by a given 64 bit double precision data with a given biased exponent e and a 52 bit fraction
is where more precisely we have :

Between 252=4,503,599,627,370,496 and 253=9,007,199,254,740,992 the representable numbers are exactly the
integers. For the next range, from 253 to 254, everything is multiplied by 2, so the representable numbers are the even
ones, etc. Conversely, for the previous range from 251 to 252, the spacing is 0.5, etc.
The spacing as a fraction of the numbers in the range from 2n to 2n+1 is 2n−52. The maximum relative rounding error
when rounding a number to the nearest representable one (the machine epsilon) is therefore 2−53.

http://en.wikipedia.org/w/index.php?title=Computing
http://en.wikipedia.org/w/index.php?title=Computer_numbering_format
http://en.wikipedia.org/w/index.php?title=Integer
http://en.wikipedia.org/w/index.php?title=Fixed_point_number
http://en.wikipedia.org/w/index.php?title=Floating_point
http://en.wikipedia.org/w/index.php?title=Bit
http://en.wikipedia.org/w/index.php?title=Single_precision
http://en.wikipedia.org/w/index.php?title=IEEE_floating-point_standard
http://en.wikipedia.org/w/index.php?title=Standardization
http://en.wikipedia.org/w/index.php?title=Floating_point
http://en.wikipedia.org/w/index.php?title=Byte
http://en.wikipedia.org/w/index.php?title=Floating_point
http://en.wikipedia.org/w/index.php?title=Precision_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=IEEE_754-2008
http://en.wikipedia.org/w/index.php?title=16-bit
http://en.wikipedia.org/w/index.php?title=Half_precision_floating-point_format
http://en.wikipedia.org/w/index.php?title=32-bit
http://en.wikipedia.org/w/index.php?title=Single_precision_floating-point_format
http://en.wikipedia.org/w/index.php?title=Decimal32_floating-point_format
http://en.wikipedia.org/w/index.php?title=64-bit
http://en.wikipedia.org/w/index.php?title=Decimal64_floating-point_format
http://en.wikipedia.org/w/index.php?title=128-bit
http://en.wikipedia.org/w/index.php?title=Quadruple_precision_floating-point_format
http://en.wikipedia.org/w/index.php?title=Decimal128_floating-point_format
http://en.wikipedia.org/w/index.php?title=Minifloat
http://en.wikipedia.org/w/index.php?title=Extended_precision
http://en.wikipedia.org/w/index.php?title=Arbitrary-precision_arithmetic
http://en.wikipedia.org/w/index.php?title=Sign_bit
http://en.wikipedia.org/w/index.php?title=Exponent
http://en.wikipedia.org/w/index.php?title=Significand
http://en.wikipedia.org/w/index.php?title=Precision_%28arithmetic%29
http://en.wikipedia.org/w/index.php?title=Significand
http://en.wikipedia.org/w/index.php?title=File:IEEE_754_Double_Floating_Point_Format.svg
http://en.wikipedia.org/w/index.php?title=Machine_epsilon


Double precision floating-point format 2

Exponent encoding
The double precision binary floating-point exponent is encoded using an offset binary representation, with the zero
offset being 1023; also known as exponent bias in the IEEE 754 standard. Examples of such representations would
be:
• Emin (1) = −1022
• E (50) = −973
• Emax (2046) = 1023
Thus, as defined by the offset binary representation, in order to get the true exponent the exponent bias of 1023 has
to be subtracted from the written exponent.
The exponents 0x000 and 0x7ff have a special meaning:
• 0x000 is used to represent zero (if F=0) and subnormals (if F≠0); and
• 0x7ff is used to represent infinity (if F=0) and NaNs (if F≠0),
where F is the fraction mantissa. All bit patterns are valid encoding.
Except for the above exceptions, the entire double precision number is described by:

Double precision examples
0x 3ff0 0000 0000 0000   = 1

0x 3ff0 0000 0000 0001   = 1.0000000000000002, the next higher number > 1

0x 3ff0 0000 0000 0002   = 1.0000000000000004

0x 4000 0000 0000 0000   = 2

0x c000 0000 0000 0000   = –2

0x 0000 0000 0000 0001   = 2-1022-52 ≈ 4.9406564584124654 x 10−324 (Min subnormal positive double)

0x 000f ffff ffff ffff   = 2-1022 - 2-1022-52 ≈ 2.2250738585072009 x 10-308 (Max subnormal positive double)

0x 0010 0000 0000 0000   = 2-1022 ≈ 2.2250738585072014 x 10−308 (Min normal positive double)

0x 7fef ffff ffff ffff   = (1 + (1 - 2-52)) x 21023 ≈ 1.7976931348623157 x 10308 (Max Double)

0x 0000 0000 0000 0000   = 0

0x 8000 0000 0000 0000   = –0

0x 7ff0 0000 0000 0000   = Infinity

0x fff0 0000 0000 0000   = −Infinity

0x 3fd5 5555 5555 5555   ≈ 1/3

(1/3 rounds down instead of up like single precision, because of the odd number of bits in the significand.)
In more detail:

Given the hexadecimal representation 0x3fd5 5555 5555 5555,

  Sign = 0x0

  Exponent = 0x3fd = 1021

  Exponent Bias = 1023 (above)

  Mantissa = 0x5 5555 5555 5555

  Value = 2(Exponent − Exponent Bias) × 1.Mantissa – Note the Mantissa must not be converted to decimal here

        = 2–2 × (0x15 5555 5555 5555 × 2–52)

        = 2–54 × 0x15 5555 5555 5555

        = 0.333333333333333314829616256247390992939472198486328125

http://en.wikipedia.org/w/index.php?title=Offset_binary
http://en.wikipedia.org/w/index.php?title=0_%28number%29
http://en.wikipedia.org/w/index.php?title=Denormal_number
http://en.wikipedia.org/w/index.php?title=Infinity
http://en.wikipedia.org/w/index.php?title=NaN
http://en.wikipedia.org/w/index.php?title=Significand
http://en.wikipedia.org/w/index.php?title=Single_precision


Double precision floating-point format 3

        ≈ 1/3



Article Sources and Contributors 4

Article Sources and Contributors
Double precision floating-point format  Source: http://en.wikipedia.org/w/index.php?oldid=445479154  Contributors: -

Image Sources, Licenses and Contributors
Image:IEEE_754_Double_Floating_Point_Format.svg  Source: http://en.wikipedia.org/w/index.php?title=File:IEEE_754_Double_Floating_Point_Format.svg  License: GNU Free
Documentation License  Contributors: Codekaizen

License
Creative Commons Attribution-Share Alike 3.0 Unported
http:/ / creativecommons. org/ licenses/ by-sa/ 3. 0/

http://creativecommons.org/licenses/by-sa/3.0/

	Double precision floating-point format
	Double precision binary floating-point format 
	Exponent encoding 
	Double precision examples 


	License

