
Parallel & Distributed

Computing Techniques

Lâm Ngọc Ẩn

Tăng Trường Tuyển

Huỳnh Tuấn Thông

Đặng Hà Thế Hiển

6/12/2011

Contents

Message-Passing Computing1

Partitioning & Divide-And-Conquer Strategies2

Synchronous Computation3

Embarrassingly Parallel Computations4

6/12/2011 2

Pipelined Computations5

Load Balancing & Termination Detection6

1. Message-Passing Computing

 Programming a message-passing

multicomputer can be achieved by:

 Designing a special parallel programming language

 Extending the syntax/reserved words of an existing

sequential high-level language to handle message-

passing.

 Using an existing sequential high-level language

and providing a library of external procedures for

message-passing.

6/12/2011 3

1. Message-Passing Computing

 Message-passing programming using user-

level message-passing libraries needs two

mechanisms:

 A method of creating separate processes for

execution on different computers

 A method of sending and receiving messages.

6/12/2011 4

1. Message-Passing Computing

 Static process creation:

 All processes are specified before execution.

 The system will execute a fixed number of

processes.

 Dynamic process creation

 Process can be created and their execution

initiated during execution of other processes.

 Number of processes may vary during execution

6/12/2011 5

1. Message-Passing Computing

 Static process creation: MPMD model

6/12/2011 6

Source
file

Executable

Processor 0 Processor p - 1

Compile to suit
processor

Source
file

1. Message-Passing Computing

 Static process creation: SPMD model

 Different processes merged into one program.

Control statements select different parts for each

processor to execute. All executables started

together.

6/12/2011 7

Source

file

Executables

Processor 0 Processor p - 1

Compile to suit
processor

1. Message-Passing Computing

 Dynamic process creation: MPMD model

 Separate programs for each processor. One

processor executes master process. Other

processes started from within master process.

6/12/2011 8

Process 1

Process 2

Time

Start execution
of process 2spawn();

1. Message-Passing Computing

 Basic “point-to-point” Send and Receive

Routines:

 Passing a message between processes using

send() and recv() library calls:

6/12/2011 9

Process 1 Process 2

Movement
of data

Generic syntax (actual formats later)

recv(&y, 1);

y

send(&x, 2);

x

1. Message-Passing Computing

 Synchronous Message Passing:

 Routines that actually return when message

transfer completed.

 Synchronous send routine:

 Waits until complete message can be accepted by

the receiving process before sending the message.

 Synchronous receive routine:

 Waits until the message it is expecting arrives.

 Synchronous routines intrinsically perform two

actions: transfer data and synchronize processes.
6/12/2011 10

1. Message-Passing Computing

 Synchronous Message Passing:

6/12/2011 11

Process 1 Process 2

Suspend
Time

process
Acknowledgment

MessageBoth processes
continue

Process 1 Process 2

Suspend
Time

process

Acknowledgment

MessageBoth processes
continue

Request to send

Request to send

send();

recv();

send();

recv();

1. Message-Passing Computing

 MPI Definitions of Blocking and Non-

Blocking:

 Blocking - return after their local actions complete,

though the message transfer may not have been

completed.

 Non-blocking - return immediately.

 Assumes that data storage used for transfer not

modified by subsequent statements prior to being

used for transfer, and it is left to the programmer to

ensure this.

6/12/2011 12

1. Message-Passing Computing

 Message Tag

 “Group” message passing routines

 Broadcast

 Gather

 Scatter

6/12/2011 13

Contents

Message-Passing Computing1

Partitioning & Divide-And-Conquer Strategies2

Synchronous Computation3

Embarrassingly Parallel Computations4

6/12/2011 14

Pipelined Computations5

Load Balancing & Termination Detection6

2. Partitioning & Divide-And-

Conquer Strategies

 Partitioning

 Partitioning simply divides the problem into parts.

 Divide and Conquer

 Characterized by dividing problem into sub-

problems of same form as larger problem. Further

divisions into still smaller sub-problems, usually

done by recursion.

6/12/2011 15

2. Partitioning & Divide-And-

Conquer Strategies

 Partitioning/Divide and Conquer Examples

 Operations on sequences of number such as

simply adding them together

 Several sorting algorithms can often be partitioned

or constructed in a recursive fashion

 Numerical integration

 N-body problem

166/12/2011

2. Partitioning & Divide-And-

Conquer Strategies

 Partitioning a sequence of numbers into

parts and adding the parts

6/12/2011 17

2. Partitioning & Divide-And-

Conquer Strategies

 Tree construction

6/12/2011 18

2. Partitioning & Divide-And-

Conquer Strategies

 Dividing a list into parts

6/12/2011 19

2. Partitioning & Divide-And-

Conquer Strategies

 Partial summation

6/12/2011 20

2. Partitioning & Divide-And-

Conquer Strategies

 Quadtree

6/12/2011 21

2. Partitioning & Divide-And-

Conquer Strategies

 Dividing an image

6/12/2011 22

2. Partitioning & Divide-And-

Conquer Strategies

 Bucket sort

 One ―bucket‖ assigned to hold numbers that fall

within each region. Numbers in each bucket sorted

using a sequential sorting algorithm.

236/12/2011

2. Partitioning & Divide-And-

Conquer Strategies

 Parallel version of bucket sort – Simple

approach

6/12/2011 24

2. Partitioning & Divide-And-

Conquer Strategies

 Further Parallelization

 Partition sequence into m regions, one region for

each processor.

 Each processor maintains p ―small‖ buckets and

separates numbers in its region into its own small

buckets.

 Small buckets then emptied into p final buckets for

sorting, which requires each processor to send one

small bucket to each of the other processors

(bucket i to processor i).

6/12/2011 25

2. Partitioning & Divide-And-

Conquer Strategies

 Another parallel version of bucket sort

6/12/2011 26

2. Partitioning & Divide-And-

Conquer Strategies

 “all-to-all” broadcast routine

6/12/2011 27

2. Partitioning & Divide-And-

Conquer Strategies

 “all-to-all” broadcast routine

6/12/2011 28

Contents

Message-Passing Computing1

Partitioning & Divide-And-Conquer Strategies2

Synchronous Computation3

Embarrassingly Parallel Computations4

6/12/2011 29

Pipelined Computations5

Load Balancing & Termination Detection6

3. Synchronous Computation

 In a (fully) synchronous application, all the

processes synchronized at regular points.

 Barrier

 A basic mechanism for synchronizing processes -

inserted at the point in each process where it must

wait.

 All processes can continue from this point when all

the processes have reached it (or, in some

implementations, when a stated number of

processes have reached this point).

306/12/2011

3. Synchronous Computation

 Processes reaching barrier at different

times

6/12/2011 31

3. Synchronous Computation

 In message-passing systems, barriers

provided with library routines:

6/12/2011 32

3. Synchronous Computation

 Barrier Implementation – Counter

implementation

 a linear barrier

6/12/2011 33

3. Synchronous Computation

 Barrier Implementation - Counter

implementation

 Good barrier implementations must take into

account that a barrier might be used more than

once in a process.

 Might be possible for a process to enter the barrier

for a second time before previous processes have

left the barrier for the first time.

6/12/2011 34

3. Synchronous Computation

 Barrier Implementation - Counter

implementation

 Counter-based barriers often have two phases:

A process enters arrival phase and does not

leave this phase until all processes have arrived

in this phase.

Then processes move to departure phase and

are released.

6/12/2011 35

3. Synchronous Computation

 Barrier Implementation - Counter

implementation

 Master:

for (i = 0; i < n; i++) /*count slaves as they reach barrier*/

recv(Pany);

for (i = 0; i < n; i++) /* release slaves */

send(Pi);

 Slave processes:

send(Pmaster);

recv(Pmaster);

6/12/2011 36

3. Synchronous Computation

 Barrier Implementation - Counter

implementation

6/12/2011 37

3. Synchronous Computation

 Barrier Implementation - Tree

implementation
 1st stage: P1 sends message to P0; (when P1 reaches its barrier)

P3 sends message to P2; (when P3 reaches its barrier)

P5 sends message to P4; (when P5 reaches its barrier)

P7 sends message to P6; (when P7 reaches its barrier)

 2nd stage: P2 sends message to P0; (P2 & P3 reached their barrier)

P6 sends message to P4; (P6 & P7 reached their barrier

 3rd stage: P4 sends message to P0; (P4, P5, P6, & P7 reached barrier)

P0 terminates arrival phase; (when P0 reaches barrier &

received message from P4)

Release with a reverse tree construction.

6/12/2011 38

3. Synchronous Computation

 Barrier Implementation - Tree

implementation

6/12/2011 39

3. Synchronous Computation

 Barrier Implementation – Butterfly Barrier

6/12/2011 40

3. Synchronous Computation

 Local Synchronization

 Suppose a process Pi needs to be synchronized

and to exchange data with process Pi-1 and

process Pi+1 before continuing:

 Not a perfect three-process barrier because

process Pi-1 will only synchronize with Pi and

continue as soon as Pi allows. Similarly, process

Pi+1 only synchronizes with Pi.6/12/2011 41

3. Synchronous Computation

 Deadlock

 When a pair of processes each send and receive

from each other, deadlock may occur.

 Deadlock will occur if both processes perform the

send, using synchronous routines first (or blocking

routines without sufficient buffering). This is

because neither will return; they will wait for

matching receives that are never reached.

6/12/2011 42

3. Synchronous Computation

 Deadlock – Solution

 Arrange for one process to receive first and then

send and the other process to send first and then

receive.

 Combined deadlock-free blocking sendrecv()

routines

6/12/2011 43

3. Synchronous Computation

 Synchronized Computations

 Can be classified as:

• In fully synchronous, all processes involved in the

computation must be synchronized.

• In locally synchronous, processes only need to

synchronize with a set of logically nearby

processes, not all processes involved in the

computation

6/12/2011 44

3. Synchronous Computation

 Fully Synchronized Computation - Data

Parallel Computations

 Same operation performed on different data

elements simultaneously; i.e., in parallel.

 Particularly convenient because:

• Ease of programming (essentially only one

program).

• Can scale easily to larger problem sizes.

• Many numeric and some non-numeric problems

can be cast in a data parallel form.

6/12/2011 45

3. Synchronous Computation

 Fully Synchronized Computation - Data

Parallel Computations

 To add the same constant to each element of an

array:

for (i = 0; i < n; i++)

a[i] = a[i] + k;

 The statement: a[i] = a[i] + k;

could be executed simultaneously by multiple

processors, each using a different index

i (0 < i <= n).

6/12/2011 46

3. Synchronous Computation

 Fully Synchronized Computation - Data

Parallel Computations

6/12/2011 47

3. Synchronous Computation

 Fully Synchronized Computation - Data

Parallel Computations

 forall construct: special ―parallel‖ construct in

parallel programming languages to specify data

parallel operations

forall (i = 0; i < n; i++) {

body

}

 states that n instances of the statements of the

body can be executed simultaneously.

6/12/2011 48

3. Synchronous Computation

 Fully Synchronized Computation - Data

Parallel Computations

 To add k to each element of an array, a, we can

write

forall (i = 0; i < n; i++)

a[i] = a[i] + k;

 Data parallel technique applied to multiprocessors

and multicomputers

i = myrank;

a[i] = a[i] + k; /* body */

barrier(mygroup);6/12/2011 49

3. Synchronous Computation

 Fully Synchronized Computation -

Synchronous Iteration

 Each iteration composed of several processes that

start together at beginning of iteration. Next iteration

cannot begin until all processes have finished

previous iteration.

6/12/2011 50

3. Synchronous Computation

 Fully Synchronized Computation -

Synchronous Iteration

 Using forall construct:

for (j = 0; j < n; j++) /*for each synch. iteration */

forall (i = 0; i < N; i++) /*N procs each using*/

body(i); /* specific value of i */

 Using message passing barrier:

for (j = 0; j < n; j++) { /*for each synchr.iteration */

i = myrank; /*find value of i to be used */

body(i);

barrier(mygroup);

}
6/12/2011 51

3. Synchronous Computation

 Fully Synchronized Computation -

Synchronous Iteration

 Solving a General System of Linear Equations by

Iteration

6/12/2011 52

3. Synchronous Computation

 Locally Synchronized Computation - Heat

Distribution Problem

6/12/2011 53

Contents

Message-Passing Computing1

Partitioning & Divide-And-Conquer Strategies2

Synchronous Computation3

Embarrassingly Parallel Computations4

6/12/2011 54

Pipelined Computations5

Load Balancing & Termination Detection6

4. Embarrassingly Parallel

Computations

6/12/2011 55

A computation that can obviously be divided into a number

of completely independent parts, each of which can be

executed by a separate process(or).

No communication or very little communication between

processes

Each process can do its tasks without any interaction with

other processes

4. Embarrassingly Parallel

Computations

static process creation and master-slave

approach

566/12/2011

4. Embarrassingly Parallel

Computations

dynamic process creation and master-slave

approach

576/12/2011

Mandelbrot Set

Set of points in a complex plane that are quasi-stable (will

increase and decrease, but not exceed some limit) when

computed by iterating the function

where zk +1 is the (k + 1)th iteration of the complex number z

= a + bi and c is a complex number giving position of point in

the complex plane. The initial value for z is zero.

Iterations continued until magnitude of z is greater than 2 or

number of iterations reaches arbitrary limit. Magnitude of z

is the length of the vector given by

3.10

Sequential routine computing value of

one point returning number of iterations
structure complex {

float real;

float imag;

};

int cal_pixel(complex c)

{

int count, max;

complex z;

float temp, lengthsq;

max = 256;

z.real = 0; z.imag = 0;

count = 0; /* number of iterations */

do {

temp = z.real * z.real - z.imag * z.imag + c.real;

z.imag = 2 * z.real * z.imag + c.imag;

z.real = temp;

lengthsq = z.real * z.real + z.imag * z.imag;

count++;

} while ((lengthsq < 4.0) && (count < max));

return count;

}

3.11

Mandelbrot set

3.12

Parallelizing Mandelbrot Set Computation

Static Task Assignment

Simply divide the region in to fixed number of parts, each

computed by a separate processor.

Not very successful because different regions require

different numbers of iterations and time.

Dynamic Task Assignment

Have processor request regions after computing previous

regions

3.13

Contents

626/12/2011

Message-Passing Computing1

Partitioning & Divide-And-Conquer Strategies2

Synchronous Computation3

Embarrassingly Parallel Computations4

Pipelined Computations5

Load Balancing & Termination Detection6

5. Pipelined Computations

6/12/2011 63

Problem divided into a series of tasks that have

to be completed one after the other (the basis

of sequential programming). Each task

executed by a separate process or processor.

5.6

5. Pipelined Computations

1. If more than one instance of the complete

problem is to be executed

2. If a series of data items must be processed, each

requiring multiple operations

3. If information to start next process can be

passed forward before process has completed

all its internal operations

5.7

―Type 1‖ Pipeline Space-Time Diagram

5.9

―Type 2‖ Pipeline Space-Time Diagram

―Type 3‖ Pipeline Space-Time Diagram

5.10

Solving a System of Linear Equations

Upper-triangular form

where a’s and b’s are constants and x’s are unknowns to be found.

5.25

Back Substitution
First, unknown x0 is found from last equation; i.e.,

Value obtained for x0 substituted into next equation to obtain x1; i.e.,

Values obtained for x1 and x0 substituted into next equation to obtain x2:

and so on until all the unknowns are found.

5.26

Pipeline Solution

First pipeline stage computes x0 and passes x0 onto the second stage, which

computes x1 from x0 and passes both x0 and x1 onto the next stage, which

computes x2 from x0 and x1, and so on.

Type 3 pipeline computation

5.27

The ith process (0 < i < n) receives the values x0, x1, x2, …, xi-1 and computes xi

from the equation:

5.28

Sequential Code

Given constants ai,j and bk stored in arrays a[][] and b[], respectively, and

values for unknowns to be stored in array, x[], sequential code could be

x[0] = b[0]/a[0][0]; //computed separately

for (i = 1; i < n; i++) { /*for remaining unknowns*/

sum = 0;

For (j = 0; j < i; j++

sum = sum + a[i][j]*x[j];

x[i] = (b[i] - sum)/a[i][i];

}

5.29

Parallel Code:

The pseudo code of process Pi (1<i<n) of the

pipelined version could be:

Pipelined Solution of A Set of Upper-

Triangular Linear Equations

1 < i < p = n
for (j = 0; j< i; j++) {

recv(P i-1, x[j]); // Receive x0, x1,.. from P(i-1)

send(P i+1,x[j]; // Send x0, x1,.. from P(i-1)

sum = sum + a[i][j]*x[j]; //Compute sum term

}

sum = 0;

x[i] = (b[i] - sum)/a[i][i]; // Compute xi

send(Pi+1, x[j]); // Send xi to P(i+1)

}

Contents

Message-Passing Computing1

Partitioning & Divide-And-Conquer Strategies2

Synchronous Computation3

Embarrassingly Parallel Computations4

6/12/2011 74

Pipelined Computations5

Load Balancing & Termination Detection6

6. Load Balancing &

Termination Detection

Load balancing – used to distribute

computations fairly across processors in

order to obtain the highest possible execution

speed.

Termination detection – detecting when a

computation has been completed. More

difficult when the computation is distributed.

6/12/2011 75

Load Balancing

6/12/2011 76

Static Load Balancing

 Round robin algorithm — passes out tasks in

sequential order of processes coming back to the first

when all processes have been given a task

 Randomized algorithms — selects processes at

random to take tasks

 Recursive bisection — recursively divides the

problem into sub-problems of equal computational

effort while minimizing message passing

 Simulated annealing — an optimization technique

Genetic algorithm — another optimization technique

6/12/2011 77

Dynamic Load Balancing

 Centralized dynamic load balancing

 Decentralized dynamic load balancing

6/12/2011 78

Centralized dynamic load

balancing

6/12/2011 79

 Advantage:The master process terminates the computation when

 The task queue is empty, and

 Every process has made a request for more tasks without any new

tasks been generated.

 Disadvantages:

 High task queue management overheads/load on master process.

 Contention over access to single queue may lead to excessive

contention delays.

Decentralized Dynamic Load

Balancing

6/12/2011 80

 Tasks could be transferred by one of two methods:

 Receiver-initiated method.

 Sender-initiated method.

81

Fully Distributed Work Pool

Termination Detection

for Decentralized Dynamic Load

Balancing

82

Message passing

Termination Detection

for Decentralized Dynamic Load

Balancing

83

Ring termination detection algorithm

Program Example: Shortest Path

Algorithm

Stages in Searching a Graph

After examining A to

After examining B to F,

E, D, and C

After examining D to E:

Moore’s Single-source Shortest-path

Algorithm

Sequential Code:
while ((i=next_vertex())!=no_vertex)

while (j=next_edge(vertex)!=no_edge)

newdist_j=dist[i] + w[i][j];

if (newdist_j < dist[j]) {

dist[j]=newdist_j;

append_gueue(j); }

}

Parallel Implementation

using Centralized Work Pool

Master

recv(any, Pi); /* request for task from process Pi */

if ((i= next_edge()!= no_edge)

send(Pi, i, dist[i]); /* send next vertex, and

. /* current distance to vertex

recv(Pj, j, dist[j]); /* receive new distances */

append_gueue(j); /* append vertex to queue */

Parallel Implementation

using Centralized Work Pool

Slave (process i)

send(Pmaster, Pi); /* send a request for task */

recv(Pmaster, i, d); /* get vertex number and distance */

while (j=next_edge(vertex)!= no_edge) { /* get next link

around vertex */

newdist_j = d + w[i][j];

if (newdist_j < dist[j]) {

dist[j]=newdist_j;

send(Pmaster, j, dist[j]); /* send back updated

distance */

}

} /* no more vertices to consider */

i.e task

Done

Parallel Implementation

Using Decentralized Work Pool

Parallel Implementation

Using Decentralized Work Pool

Master

if ((i = next_vertex()!= no_vertex)

send(Pi, "start"); /* start up slave process i */

Slave (process i)

if (recv(Pj, msgtag = 1)) /* asking for distance */

send(Pj, msgtag = 2, dist[i]); /* sending current

distance */

if (nrecv(Pmaster) { /* if start-up message */

while (j=next_edge(vertex)!=no_edge) { /* get next

link around vertex */

newdist_j = dist[i] + w[j];

send(Pj, msgtag=1); /* Give me the distance */

recv(Pi, msgtag = 2 , dist[j]); * Thank you */

if (newdist_j > dist[j]) {

dist[j] = newdist_j;

send(Pj, msgtag=3, dist[j]); * send updated

distance to proc. j */

}

}

}

References

 Parallel Programming: Techniques and

Application Using Networked Workstations and

Parallel Computers, Barry Wilkinson and

Michael Allen, Second Edition, Prentice Hall,

2005

 Using some slides of B. Wilkinson & M. Allen at

http://coitweb.uncc.edu/~abw/parallel/par_prog/r

esources.htm

916/12/2011

http://coitweb.uncc.edu/~abw/parallel/par_prog/resources.htm
http://coitweb.uncc.edu/~abw/parallel/par_prog/resources.htm

6/12/2011 92

