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1. Message-Passing Computing

 Programming a message-passing 

multicomputer can be achieved by:

 Designing a special parallel programming language

 Extending the syntax/reserved words of an existing 

sequential high-level language to handle message-

passing.

 Using an existing sequential high-level language 

and providing a library of external procedures for 

message-passing. 
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1. Message-Passing Computing

 Message-passing programming using user-

level message-passing libraries needs two 

mechanisms:

 A method of creating separate processes for 

execution on different computers

 A method of sending and receiving messages.
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1. Message-Passing Computing

 Static process creation:

 All processes are specified before execution.

 The system will execute a fixed number of 

processes.

 Dynamic process creation

 Process can be created and their execution 

initiated during execution of other processes.

 Number of processes may vary during execution
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1. Message-Passing Computing

 Static process creation: MPMD model
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1. Message-Passing Computing

 Static process creation: SPMD model

 Different processes merged into one program. 

Control statements select different parts for each 

processor to execute. All executables started 

together.

6/12/2011 7

Source

file

Executables

Processor 0 Processor p - 1

Compile to suit
processor



1. Message-Passing Computing

 Dynamic process creation: MPMD model

 Separate programs for each processor. One 

processor executes master process. Other 

processes started from within master process.
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1. Message-Passing Computing

 Basic “point-to-point” Send and Receive 

Routines:

 Passing a message between processes using 

send() and recv() library calls:
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1. Message-Passing Computing

 Synchronous Message Passing:

 Routines that actually return when message 

transfer completed.

 Synchronous send routine:

 Waits until complete message can be accepted by 

the receiving process before sending the message. 

 Synchronous receive routine:

 Waits until the message it is expecting arrives.

 Synchronous routines intrinsically perform two 

actions: transfer data and synchronize processes.
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1. Message-Passing Computing

 Synchronous Message Passing:

6/12/2011 11

Process 1 Process 2

Suspend
Time

process
Acknowledgment

MessageBoth processes
continue

Process 1 Process 2

Suspend
Time

process

Acknowledgment

MessageBoth processes
continue

Request to send

Request to send

send();

recv();

send();

recv();



1. Message-Passing Computing

 MPI Definitions of Blocking and Non-

Blocking:

 Blocking - return after their local actions complete, 

though the message transfer may not have been 

completed.

 Non-blocking - return immediately. 

 Assumes that data storage used for transfer not 

modified by subsequent statements prior to being 

used for transfer, and it is left to the programmer to 

ensure this.
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1. Message-Passing Computing

 Message Tag

 “Group” message passing routines

 Broadcast

 Gather

 Scatter
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2. Partitioning & Divide-And-

Conquer  Strategies

 Partitioning

 Partitioning simply divides the problem into parts.

 Divide and Conquer

 Characterized by dividing problem into sub-

problems of same form as larger problem. Further 

divisions into still smaller sub-problems, usually 

done by recursion.
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2. Partitioning & Divide-And-

Conquer  Strategies

 Partitioning/Divide and Conquer Examples

 Operations on sequences of number such as 

simply adding them together

 Several sorting algorithms can often be partitioned 

or constructed in a recursive fashion

 Numerical integration

 N-body problem
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2. Partitioning & Divide-And-

Conquer  Strategies

 Partitioning a sequence of numbers into 

parts and adding the parts
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2. Partitioning & Divide-And-

Conquer  Strategies

 Tree construction
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2. Partitioning & Divide-And-

Conquer  Strategies

 Dividing a list into parts
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2. Partitioning & Divide-And-

Conquer  Strategies

 Partial summation
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2. Partitioning & Divide-And-

Conquer  Strategies

 Quadtree
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2. Partitioning & Divide-And-

Conquer  Strategies

 Dividing an image
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2. Partitioning & Divide-And-

Conquer  Strategies

 Bucket sort

 One ―bucket‖ assigned to hold numbers that fall 

within each region. Numbers in each bucket sorted 

using a sequential sorting algorithm.
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2. Partitioning & Divide-And-

Conquer  Strategies

 Parallel version of bucket sort – Simple 

approach
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2. Partitioning & Divide-And-

Conquer  Strategies

 Further Parallelization

 Partition sequence into m regions, one region for

each processor.

 Each processor maintains p ―small‖ buckets and

separates numbers in its region into its own small

buckets.

 Small buckets then emptied into p final buckets for

sorting, which requires each processor to send one

small bucket to each of the other processors

(bucket i to processor i).
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2. Partitioning & Divide-And-

Conquer  Strategies

 Another parallel version of bucket sort
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2. Partitioning & Divide-And-

Conquer  Strategies

 “all-to-all” broadcast routine
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2. Partitioning & Divide-And-

Conquer  Strategies

 “all-to-all” broadcast routine
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3. Synchronous Computation

 In a (fully) synchronous application, all the

processes synchronized at regular points.

 Barrier

 A basic mechanism for synchronizing processes -

inserted at the point in each process where it must 

wait.

 All processes can continue from this point when all 

the processes have reached it (or, in some 

implementations, when a stated number of 

processes have reached this point).
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3. Synchronous Computation

 Processes reaching barrier at different 

times
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3. Synchronous Computation

 In message-passing systems, barriers 

provided with library routines:
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3. Synchronous Computation

 Barrier Implementation – Counter 

implementation

 a linear barrier
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3. Synchronous Computation

 Barrier Implementation - Counter 

implementation

 Good barrier implementations must take into 

account that a barrier might be used more than 

once in a process.

 Might be possible for a process to enter the barrier 

for a second time before previous processes have 

left the barrier for the first time.
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3. Synchronous Computation

 Barrier Implementation - Counter 

implementation

 Counter-based barriers often have two phases:

A process enters arrival phase and does not 

leave this phase until all processes have arrived 

in this phase.

Then processes move to departure phase and 

are released.
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3. Synchronous Computation

 Barrier Implementation - Counter 

implementation

 Master:

for (i = 0; i < n; i++)       /*count slaves as they reach barrier*/

recv(Pany);

for (i = 0; i < n; i++)      /* release slaves */

send(Pi);

 Slave processes:

send(Pmaster);

recv(Pmaster);
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3. Synchronous Computation

 Barrier Implementation - Counter 

implementation
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3. Synchronous Computation

 Barrier Implementation - Tree 

implementation
 1st stage: P1 sends message to P0; (when P1 reaches its barrier)

P3 sends message to P2; (when P3 reaches its barrier)

P5 sends message to P4; (when P5 reaches its barrier)

P7 sends message to P6; (when P7 reaches its barrier)

 2nd stage: P2 sends message to P0; (P2 & P3 reached their barrier)

P6 sends message to P4; (P6 & P7 reached their barrier

 3rd stage: P4 sends message to P0; (P4, P5, P6, & P7 reached barrier)

P0 terminates arrival phase; (when P0 reaches barrier & 

received message from P4)

Release with a reverse tree construction.
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3. Synchronous Computation

 Barrier Implementation - Tree 

implementation
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3. Synchronous Computation

 Barrier Implementation – Butterfly Barrier
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3. Synchronous Computation

 Local Synchronization

 Suppose a process Pi needs to be synchronized 

and to exchange data with process Pi-1 and 

process Pi+1 before continuing:

 Not a perfect three-process barrier because 

process Pi-1 will only synchronize with Pi and 

continue as soon as Pi allows. Similarly, process 

Pi+1 only synchronizes with Pi.6/12/2011 41



3. Synchronous Computation

 Deadlock

 When a pair of processes each send and receive

from each other, deadlock may occur.

 Deadlock will occur if both processes perform the 

send, using synchronous routines first (or blocking 

routines without sufficient buffering). This is 

because neither will return; they will wait for 

matching receives that are never reached.
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3. Synchronous Computation

 Deadlock – Solution 

 Arrange for one process to receive first and then

send and the other process to send first and then

receive.

 Combined deadlock-free blocking sendrecv() 

routines

6/12/2011 43



3. Synchronous Computation

 Synchronized Computations

 Can be classified as:

• In fully synchronous, all processes involved in the 

computation must be synchronized.

• In locally synchronous, processes only need to 

synchronize with a set of logically nearby 

processes, not all processes involved in the 

computation

6/12/2011 44



3. Synchronous Computation

 Fully Synchronized Computation - Data 

Parallel Computations 

 Same operation performed on different data 

elements simultaneously; i.e., in parallel.

 Particularly convenient because:

• Ease of programming (essentially only one 

program).

• Can scale easily to larger problem sizes.

• Many numeric and some non-numeric problems 

can be cast in a data parallel form.
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3. Synchronous Computation

 Fully Synchronized Computation - Data 

Parallel Computations 

 To add the same constant to each element of an 

array:

for (i = 0; i < n; i++)

a[i] = a[i] + k;

 The statement: a[i] = a[i] + k;

could be executed simultaneously by multiple 

processors, each using a different index                   

i (0 < i <= n).
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3. Synchronous Computation

 Fully Synchronized Computation - Data 

Parallel Computations 
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3. Synchronous Computation

 Fully Synchronized Computation - Data 

Parallel Computations 

 forall construct: special ―parallel‖ construct in 

parallel programming languages to specify data 

parallel operations

forall (i = 0; i < n; i++) {

body

}

 states that n instances of the statements of the 

body can be executed simultaneously.
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3. Synchronous Computation

 Fully Synchronized Computation - Data 

Parallel Computations 

 To add k to each element of an array, a, we can 

write

forall (i = 0; i < n; i++)

a[i] = a[i] + k;

 Data parallel technique applied to multiprocessors 

and multicomputers

i = myrank;

a[i] = a[i] + k;        /* body */

barrier(mygroup);6/12/2011 49



3. Synchronous Computation

 Fully Synchronized Computation -

Synchronous Iteration 

 Each iteration composed of several processes that

start together at beginning of iteration. Next iteration

cannot begin until all processes have finished

previous iteration.
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3. Synchronous Computation

 Fully Synchronized Computation -

Synchronous Iteration 

 Using forall construct:

for (j = 0; j < n; j++)             /*for each synch. iteration */

forall (i = 0; i < N; i++)     /*N procs each using*/

body(i);                  /* specific value of i */

 Using message passing barrier:

for (j = 0; j < n; j++) {            /*for each synchr.iteration */

i = myrank;                /*find value of i to be used */

body(i);

barrier(mygroup);

}
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3. Synchronous Computation

 Fully Synchronized Computation -

Synchronous Iteration 

 Solving a General System of Linear Equations by 

Iteration
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3. Synchronous Computation

 Locally Synchronized Computation - Heat 

Distribution Problem
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4. Embarrassingly Parallel 

Computations
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A computation that can obviously be divided into a number

of completely independent parts, each of which can be

executed by a separate process(or).

No communication or very little communication between

processes

Each process can do its tasks without any interaction with

other processes



4. Embarrassingly Parallel 

Computations

static process creation and master-slave 

approach
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4. Embarrassingly Parallel 

Computations

dynamic process creation and master-slave

approach
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Mandelbrot Set

Set of points in a complex plane that are quasi-stable (will

increase and decrease, but not exceed some limit) when

computed by iterating the function

where zk +1 is the (k + 1)th iteration of the complex number z

= a + bi and c is a complex number giving position of point in

the complex plane. The initial value for z is zero.

Iterations continued until magnitude of z is greater than 2 or

number of iterations reaches arbitrary limit. Magnitude of z

is the length of the vector given by

3.10



Sequential routine computing value of 

one point returning number of iterations
structure complex {

float real;

float imag;

};

int cal_pixel(complex c)

{

int count, max;

complex z;

float temp, lengthsq;

max = 256;

z.real = 0; z.imag = 0;

count = 0;                                 /* number of iterations */

do {

temp = z.real * z.real - z.imag * z.imag + c.real;

z.imag = 2 * z.real * z.imag + c.imag;

z.real = temp;

lengthsq = z.real * z.real + z.imag * z.imag;

count++;

} while ((lengthsq < 4.0) && (count < max));

return count;

}
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Mandelbrot set
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Parallelizing Mandelbrot Set Computation

Static Task Assignment

Simply divide the region in to fixed number of parts, each

computed by a separate processor.

Not very successful because different regions require

different numbers of iterations and time.

Dynamic Task Assignment

Have processor request regions after computing previous

regions
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5. Pipelined Computations
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Problem divided into a series of tasks that have

to be completed one after the other (the basis

of sequential programming). Each task

executed by a separate process or processor.



5.6

5. Pipelined Computations

1. If more than one instance of the complete

problem is to be executed

2. If a series of data items must be processed, each

requiring multiple operations

3. If information to start next process can be

passed forward before process has completed

all its internal operations



5.7

―Type 1‖ Pipeline Space-Time Diagram
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―Type 2‖ Pipeline Space-Time Diagram



―Type 3‖ Pipeline Space-Time Diagram
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Solving a System of Linear Equations

Upper-triangular form

where a’s and b’s are constants and x’s are unknowns to be found.
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Back Substitution
First, unknown x0 is found from last equation; i.e.,

Value obtained for x0 substituted into next equation to obtain x1; i.e.,

Values obtained for x1 and x0 substituted into next equation to obtain x2:

and so on until all the unknowns are found.
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Pipeline Solution

First pipeline stage computes x0 and passes x0 onto the second stage, which

computes x1 from x0 and passes both x0 and x1 onto the next stage, which

computes x2 from x0 and x1, and so on.

Type 3 pipeline computation
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The ith process (0 < i < n) receives the values x0, x1, x2, …, xi-1 and computes xi

from the equation:
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Sequential Code

Given constants ai,j and bk stored in arrays a[ ][ ] and b[ ], respectively, and

values for unknowns to be stored in array, x[ ], sequential code could be

x[0] = b[0]/a[0][0];              //computed separately

for (i = 1; i < n; i++) {          /*for remaining unknowns*/

sum = 0;

For (j = 0; j < i; j++

sum = sum + a[i][j]*x[j];

x[i] = (b[i] - sum)/a[i][i];

}

5.29



Parallel Code: 

The pseudo code of process Pi (1<i<n) of the 

pipelined version could be: 

Pipelined Solution of A Set of Upper-

Triangular Linear Equations

1 < i < p = n
for (j = 0; j< i; j++) {

recv(P i-1, x[j]);  // Receive x0, x1,.. from P(i-1)

send(P i+1,x[j]; // Send x0, x1,.. from P(i-1)

sum = sum + a[i][j]*x[j];  //Compute sum term

}

sum = 0;

x[i] = (b[i] - sum)/a[i][i]; // Compute xi

send(Pi+1, x[j]); // Send xi to P(i+1)

}



Contents

Message-Passing Computing1

Partitioning & Divide-And-Conquer Strategies2

Synchronous Computation3

Embarrassingly Parallel Computations4

6/12/2011 74

Pipelined Computations5

Load Balancing & Termination Detection6



6. Load Balancing & 

Termination Detection

Load balancing – used to distribute 

computations fairly across processors in 

order to obtain the highest possible execution 

speed.

Termination detection – detecting when a 

computation has been completed. More 

difficult when the computation is distributed.
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Load Balancing
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Static Load Balancing 

 Round robin algorithm — passes out tasks in

sequential order of processes coming back to the first

when all processes have been given a task

 Randomized algorithms — selects processes at

random to take tasks

 Recursive bisection — recursively divides the

problem into sub-problems of equal computational

effort while minimizing message passing

 Simulated annealing — an optimization technique

Genetic algorithm — another optimization technique
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Dynamic Load Balancing

 Centralized dynamic load balancing

 Decentralized dynamic load balancing
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Centralized dynamic load 

balancing
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 Advantage:The master process terminates the computation when

 The task queue is empty, and

 Every process has made a request for more tasks without any new

tasks been generated.

 Disadvantages:

 High task queue management overheads/load on master process.

 Contention over access to single queue may lead to excessive

contention delays.



Decentralized Dynamic Load 

Balancing
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 Tasks could be transferred by one of two methods:

 Receiver-initiated method.

 Sender-initiated method.
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Fully Distributed Work Pool



Termination Detection 

for Decentralized Dynamic Load 

Balancing

82

Message passing



Termination Detection 

for Decentralized Dynamic Load 

Balancing

83

Ring termination detection algorithm



Program Example:  Shortest Path

Algorithm



Stages in Searching a Graph

After examining A to

After examining B to F, 

E, D, and C

After examining D to E:



Moore’s Single-source Shortest-path 

Algorithm

Sequential Code: 
while ((i=next_vertex())!=no_vertex)

while (j=next_edge(vertex)!=no_edge)

newdist_j=dist[i] + w[i][j];

if (newdist_j < dist[j]) {

dist[j]=newdist_j;

append_gueue(j); }

}



Parallel Implementation

using Centralized Work Pool

Master

recv(any, Pi); /* request for task from process Pi */

if ((i= next_edge()!= no_edge)

send(Pi, i, dist[i]); /* send next vertex, and

.                  /* current distance to vertex 

recv(Pj, j, dist[j]);      /* receive new distances */

append_gueue(j);        /* append vertex to queue */



Parallel Implementation

using Centralized Work Pool

Slave (process i)

send(Pmaster, Pi); /* send a request for task */

recv(Pmaster, i, d); /* get vertex number and distance */

while (j=next_edge(vertex)!= no_edge) {  /* get next link 

around vertex */

newdist_j = d + w[i][j];

if (newdist_j < dist[j]) {

dist[j]=newdist_j;

send(Pmaster, j, dist[j]); /* send back updated 

distance */

}

} /* no more vertices to consider */

i.e task

Done



Parallel Implementation

Using Decentralized Work Pool



Parallel Implementation

Using Decentralized Work Pool

Master

if ((i = next_vertex()!= no_vertex)

send(Pi, "start");  /* start up slave process i */

Slave (process i)

if (recv(Pj, msgtag = 1))  /* asking for distance */

send(Pj, msgtag = 2, dist[i]); /* sending current 

distance */

if (nrecv(Pmaster) {    /* if start-up message */

while (j=next_edge(vertex)!=no_edge) {     /* get next 

link around vertex */

newdist_j = dist[i] + w[j];

send(Pj, msgtag=1); /* Give me the distance */

recv(Pi, msgtag = 2 , dist[j]);  * Thank you */

if (newdist_j > dist[j]) {

dist[j] = newdist_j;

send(Pj, msgtag=3, dist[j]); * send updated 

distance to proc. j */

}

}

}
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