
1

Chapter 1

Disk Storage, Basic File Structures,

and Hashing.

Adapted from the slides of “Fundamentals of Database Systems”

(Elmasri et al., 2003)

2

Chapter Outline

 Disk Storage Devices

 Files of Records

 Operations on Files

 Unordered Files

 Ordered Files

 Hashed Files

 Dynamic and Extendible Hashing Techniques

 RAID Technology

3

Disk Storage Devices

 Preferred secondary storage device for high

storage capacity and low cost.

 Data stored as magnetized areas on

magnetic disk surfaces.

 A disk pack contains several magnetic disks

connected to a rotating spindle.

 Disks are divided into concentric circular

tracks on each disk surface . Track

capacities vary typically from 4 to 50 Kbytes.

4

Disk Storage Devices (cont.)

 Because a track usually contains a large amount of
information, it is divided into smaller blocks or
sectors .

 The division of a track into sectors is hard-coded on
the disk surface and cannot be changed. One type
of sector organization calls a portion of a track that
subtends a fixed angle at the center as a sector.

 A track is divided into blocks. The block size B is
fixed for each system. Typical block sizes range
from B=512 bytes to B=4096 bytes. Whole blocks
are transferred between disk and main memory for
processing.

5

6

Disk Storage Devices (cont.)

 A read-write head moves to the track that contains
the block to be transferred. Disk rotation moves the
block under the read-write head for reading or
writing.

 A physical disk block (hardware) address consists of
a cylinder number (imaginary collection of tracks of
same radius from all recorded surfaces), the track
number or surface number (within the cylinder), and
block number (within track).

 Reading or writing a disk block is time consuming
because of the seek time s and rotational delay
(latency) rd.

 Double buffering can be used to speed up the
transfer of contiguous disk blocks.

7

Disk storage devices (cont.)

8

Records

 Fixed and variable length records

 Records contain fields which have values of a

particular type (e.g., amount, date, time, age)

 Fields themselves may be fixed length or

variable length

 Variable length fields can be mixed into one

record: separator characters or length fields

are needed so that the record can be

“parsed”.

9

Blocking

 Blocking: refers to storing a number of
records in one block on the disk.

 Blocking factor (bfr) refers to the number of
records per block.

 There may be empty space in a block if an
integral number of records do not fit in one
block.

 Spanned Records : refer to records that
exceed the size of one or more blocks and
hence span a number of blocks.

10

Files of Records

 A file is a sequence of records, where each record is
a collection of data values (or data items).

 A file descriptor (or file header) includes information
that describes the file, such as the field names and
their data types , and the addresses of the file blocks
on disk.

 Records are stored on disk blocks. The blocking
factor bfr for a file is the (average) number of file
records stored in a disk block.

 A file can have fixed-length records or variable-length
records.

11

Files of Records (cont.)

 File records can be unspanned (no record can span
two blocks) or spanned (a record can be stored in
more than one block).

 The physical disk blocks that are allocated to hold
the records of a file can be contiguous, linked, or
indexed .

 In a file of fixed-length records, all records have the
same format. Usually, unspanned blocking is used
with such files.

 Files of variable-length records require additional
information to be stored in each record, such as
separator characters and field types. Usually
spanned blocking is used with such files.

12

Operation on Files

Typical file operations include:

 OPEN: Reads the file for access, and associates a
pointer that will refer to a current file record at each point
in time.

 FIND: Searches for the first file record that satisfies
a certain condition, and makes it the current file record.

 FINDNEXT: Searches for the next file record (from
the current record) that satisfies a certain condition, and
makes it the current file record.

 READ: Reads the current file record into a program
variable.

 INSERT: Inserts a new record into the file, and makes
it the current file record.

13

Operation on Files (cont.)

 DELETE: Removes the current file record from the
file, usually by marking the record to indicate that it
is no longer valid.

 MODIFY: Changes the values of some fields of the
current file record.

 CLOSE: Terminates access to the file.

 REORGANIZE: Reorganizes the file records. For
example, the records marked deleted are physically
removed from the file or a new organization of the
file records is created.

 READ_ORDERED: Read the file blocks in order of
a specific field of the file.

14

Unordered Files

 Also called a heap or a pile file.

 New records are inserted at the end of the file.

 To search for a record, a linear search through the

file records is necessary. This requires reading and

searching half the file blocks on the average, and is

hence quite expensive.

 Record insertion is quite efficient.

 Reading the records in order of a particular field

requires sorting the file records.

15

Ordered Files

 Also called a sequential file .

 File records are kept sorted by the values of an
ordering field

 Insertion is expensive: records must be inserted in
the correct order. It is common to keep a separate
unordered overflow (or transaction) file for new
records to improve insertion efficiency; this is
periodically merged with the main ordered file.

 A binary search can be used to search for a record
on its ordering field value. This requires reading and
searching log2 of the file blocks on the average, an
improvement over linear search.

 Reading the records in order of the ordering field is
quite efficient.

16

17

Average Access Times

 The following table shows the average access time

to access a specific record for a given type of file

18

Hashed Files

 Hashing for disk files is called External Hashing

 The file blocks are divided into M equal-sized buckets ,
numbered bucket0, bucket1, ..., bucketM-1. Typically, a
bucket corresponds to one (or a fixed number of) disk
block.

 One of the file fields is designated to be the hash key of the
file.

 The record with hash key value K is stored in bucket i,
where i = h(K), and h is the hashing function .

 Search is very efficient on the hash key.

 Collisions occur when a new record hashes to a bucket
that is already full. An overflow file is kept for storing such
records. Overflow records that hash to each bucket can be
linked together.

19

Hashed Files (cont.)

There are numerous methods for collision resolution, including
the following:

 Open addressing: Proceeding from the occupied position
specified by the hash address, the program checks the
subsequent positions in order until an unused (empty)
position is found.

 Chaining: For this method, various overflow locations are
kept, usually by extending the array with a number of
overflow positions. In addition, a pointer field is added to
each record location. A collision is resolved by placing the
new record in an unused overflow location and setting the
pointer of the occupied hash address location to the address
of that overflow location.

 Multiple hashing:The program applies a second hash
function if the first results in a collision. If another collision
results, the program uses open addressing or applies a third
hash function and then uses open addressing if necessary.

20

21

Hashed Files (cont.)

 To reduce overflow records, a hash file is typically

kept 70-80% full.

 The hash function h should distribute the records

uniformly among the buckets; otherwise, search

time will be increased because many overflow

records will exist.

 Main disadvantages of static external hashing:

 Fixed number of buckets M is a problem if the number of

records in the file grows or shrinks.

 Ordered access on the hash key is quite inefficient

(requires sorting the records).

22

23

Dynamic And Extendible Hashed Files

Dynamic and Extendible Hashing Techniques

 Hashing techniques are adapted to allow the
dynamic growth and shrinking of the number of file
records.

 These techniques include the following: dynamic
hashing, extendible hashing, and linear hashing.

 Both dynamic and extendible hashing use the binary
representation of the hash value h(K) in order to
access a directory. In dynamic hashing the directory
is a binary tree. In extendible hashing the directory
is an array of size 2d where d is called the global
depth.

24

Dynamic And Extendible Hashing (cont.)

 The directories can be stored on disk, and they
expand or shrink dynamically. Directory entries point
to the disk blocks that contain the stored records.

 An insertion in a disk block that is full causes the
block to split into two blocks and the records are
redistributed among the two blocks. The directory is
updated appropriately.

 Dynamic and extendible hashing do not require an
overflow area.

 Linear hashing does require an overflow area but
does not use a directory. Blocks are split in linear
order as the file expands.

25

26

Parallelizing Disk Access using RAID

Technology.

 Secondary storage technology must take steps to

keep up in performance and reliability with

processor technology.

 A major advance in secondary storage technology is

represented by the development of RAID, which

originally stood for Redundant Arrays of

Inexpensive Disks.

 The main goal of RAID is to even out the widely

different rates of performance improvement of disks

against those in memory and microprocessors.

27

RAID Technology (cont.)

 A natural solution is a large array of small independent
disks acting as a single higher-performance logical disk.
A concept called data striping is used, which utilizes
parallelism to improve disk performance.

 Data striping distributes data transparently over multiple
disks to make them appear as a single large, fast disk.

28

RAID Technology (cont.)
Different raid organizations were defined based on different

combinations of the two factors of granularity of data interleaving
(striping) and pattern used to compute redundant information.

 Raid level 0 has no redundant data and hence has the best write
performance.

 Raid level 1 uses mirrored disks.

 Raid level 2 uses memory-style redundancy by using Hamming
codes, which contain parity bits for distinct overlapping subsets
of components. Level 2 includes both error detection and
correction.

 Raid level 3 uses a single parity disk relying on the disk controller
to figure out which disk has failed.

 Raid levels 4 and 5 use block-level data striping, with level 5
distributing data and parity information across all disks.

 Raid level 6 applies the so-called P + Q redundancy scheme
using Reed-Soloman codes to protect against up to two disk
failures by using just two redundant disks.

29

Use of RAID Technology (cont.)
Different raid organizations are being used under different
situations

 Raid level 1 (mirrored disks)is the easiest for rebuild of a disk from other

disks

 It is used for critical applications like logs

 Raid level 2 uses memory-style redundancy by using Hamming codes,
which contain parity bits for distinct overlapping subsets of components.
Level 2 includes both error detection and correction.

 Raid level 3 (single parity disks relying on the disk controller to figure
out which disk has failed) and level 5 (block-level data striping) are
preferred for large volume storage, with level 3 giving higher transfer
rates.

 Most popular uses of the RAID technology currently are: Level 0 (with
striping), Level 1 (with mirroring) and Level 5 with an extra drive for
parity.

 Design decisions for RAID include – level of RAID, number of disks,
choice of parity schemes, and grouping of disks for block-level striping.

30

31

Storage Area Networks

 The demand for higher storage has risen
considerably in recent times.

 Organizations have a need to move from a static
fixed data center oriented operation to a more
flexible and dynamic infrastructure for information
processing.

 Thus they are moving to a concept of Storage Area
Networks (SANs). In a SAN, online storage
peripherals are configured as nodes on a high-
speed network and can be attached and detached
from servers in a very flexible manner.

 This allows storage systems to be placed at longer
distances from the servers and provide different
performance and connectivity options.

32

Storage Area Networks (contd.)

 Advantages of SANs are:

 Flexible many-to-many connectivity among servers and

storage devices using fiber channel hubs and switches.

 Up to 10km separation between a server and a storage

system using appropriate fiber optic cables.

 Better isolation capabilities allowing nondisruptive addition

of new peripherals and servers.

 SANs face the problem of combining storage

options from multiple vendors and dealing with

evolving standards of storage management software

and hardware.

