Chapter 2

Indexing Structures for Files

Adapted from the slides of “Fundamentals of Database Systems”
(Elmasri et al., 2003)

Chapter outline

Types of Single-level Ordered Indexes
o Primary Indexes

o Clustering Indexes

o Secondary Indexes

Multilevel Indexes

Dynamic Multilevel Indexes Using B-Trees
and B+-Trees

Indexes on Multiple Keys

Indexes as Access Paths

A single-level index is an auxiliary file that makes it
more efficient to search for a record in the data file.

The index Is usually specified on one field of the file
(although it could be specified on several fields)

One form of an index is a file of entries <field value,
pointer to record>, which is ordered by field value

The index Is called an access path on the field.

Indexes as Access Paths (cont.)

The index file usually occupies considerably less
disk blocks than the data file because its entries are
much smaller

A binary search on the index yields a pointer to the
file record

Indexes can also be characterized as dense or
sparse.

o A dense index has an index entry for every search key
value (and hence every record) in the data file.

o A sparse (or nondense) index, on the other hand, has
Index entries for only some of the search values

Example: Given the following data file:
EMPLOYEE(NAME, SSN, ADDRESS, JOB, SAL, ...)
Suppose that:

record size R=150 bytes

block size B=512 bytes

r=30000 records

Then, we get:
blocking factor Bfr= B div R=| B/R] = 512 div 150= 3 records/block
number of file blocks b= r/Bfr |= (30000/3)= 10000 blocks

For an index on the SSN field, assume the field size V¢4,=9 bytes,
assume the record pointer size Pg=7 bytes. Then:

index entry size R=(Vggyt+ Pr)=(9+7)=16 bytes

index blocking factor Bfr= B div R= 512 div 16= 32 entries/block
number of index blocks b= (r/ Bfr,)= (30000/32)= 938 blocks
binary search needs log,b=109,938= 10 block accesses

This is compared to an average linear search cost of:

(b/2)= 10000/2 = 5000 block accesses

If the file records are ordered, the binary search cost would be:
log,b= 109,10000 = 13 block accesses

Types of Single-Level Indexes

Primary Index
Defined on an ordered data file

The data file is ordered on a key field, includes one
Index entry for each block in the data file; the index
entry has the key field value for the first record In
the block, which is called the block anchor

A similar scheme can use the last record in a block.

A primary index Is a nondense (sparse) index, since
it includes an entry for each disk block of the data
file and the keys of its anchor record rather than for
every search value.

Primary index on the DATAFLE

(PRIMARY
. . KEY FIELD)
ordering key field NE Su BRMOATE 8 sasny | SEX
Aaron, Ed
M:bl:l'x“
R | 1 I
Adams, Jobn
Adams, Robin
(<K(D'!P(£D§:|£a} 1
' Mem s || 1 I
BLOCK
PRIMAHF; /Allvdbob“
VALLE POINTER ;
— Renam | | - I
m‘m. 28 Allan, Troy
Alexander, Ed o f’/”mm
Allen, Troy -, ;
Anderson, Zach «\m.m] | | | |
Asmaid, Mack .
i Anderson, Zach
Angeli. Joe
T 1 [
Arnoid, Mack
Amaold, Steven
Wong, James -]
Wight, Pam A, Tty || 1 I
Wong, James
Wood, Dorakd
Vioods, Marmy__| 1 I
Winight, Pam
Wiyatl, Chares
A 1 I

Types of Single-Level Indexes

Clustering Index
Defined on an ordered data file

The data file is ordered on a non-key field unlike
primary index, which requires that the ordering field
of the data file have a distinct value for each record.

Includes one index entry for each distinct value of
the field; the index entry points to the first data block
that contains records with that field value.

It is another example of nondense index where
Insertion and deletion is relatively straightforward
with a clustering index.

DATAFILE
(CLUSTERING
FIELD)

A clustering index on the DEPTNUMBER NAME SSN JOB BIRTHDATE SALARY

DEPTNUMBER ordering nonkey

N | et | et | e

field of an EMPLOYEE file.

INDEX FILE

(<K(i), P(i)> entries)

'CLUSTERING BLOCK
FIELD VALUE POINTER

1

LNEN
\\
&Sl lwlw Wil lwin

el

Y

(=3 K- S U I VA

oo (O

/f/

@ | o |;

{CLUSTERNG DATARLE
RELDY

DEFTNVUMBER NAVE SSN X8 BIRTHOATE SALAKY

1
1
[Hokpas e—1) nfpome
-
2
ook palraas "), nipointer
3
3
(‘K‘I]"OEXR.E E Mu!‘_-)
NS T T T
L
- 7 S ™\ g
: e
; 5
8 h Hhock poirse .—AMW
5
5 . .
3 Clustering index
o-——-/_\ - :
——— with a separate
5 block cluster for
[
: each group of
N 3 I records that share
\ the same value for
= e the clustering field.
3
Lk gt O—AMW

10

Types of Single-Level Indexes

Secondary Index

A secondary index provides a secondary means of
accessing a file for which some primary access
already exists.

The secondary index may be on a field which is a
candidate key and has a unique value in every
record, or a nonkey with duplicate values.

The index Is an ordered file with two fields.

o The first field is of the same data type as some nonordering
field of the data file that is an indexing field.

o The second field is either a block pointer or a record
pointer. There can be many secondary indexes (and
hence, indexing fields) for the same file.

Includes one entry for each record in the data file;
hence, it is a dense index

11

DATA FILE

INDEXING
FIELD
(SECONDARY
KEY FIELD)
9
INDEX FILE 5
(<K()), P{i)> entries) 13
INDEX 8
FIELD BLOCK
VALUE POINTER 6
1 . 18
2 . 3
4 o
5 ™ 21
6 - 11
7 16
8 o 2
9 24
10 La 10
1" . 20
12 . 1
13 o
14 . 4
15 23
16 v 18
14
17
18 * 12
19 . 7
20 o 19
21 22
22 *
23 %
24 v

A dense
secondary index
(with block
pointers) on a
nonordering key
field of a file.

12

A secondary index (with recored pointers) on a nonkey field implemented
using one level of indirection so that index entries are of fixed length and
have unique field values.

DATAFILE

(INDEXNG
FIELD)

DEPTNUMBER NAME SSN JOB BIRTHDATE SALARY

BLOCKS OF
RECORD
POINTERS

[B L R

INDEX FILE

N\ :
- 3
;& 4

{<KIi], Pi-antnes) :] 3

FELD BLOCK -

VALLE POINTER AL 6
1 ¢ ; 8
2 re s “+
3 | — 1
4 "~ ‘ g
g .‘\ g

o= 5
L \\ o >
_7%‘1 5

L 7k

q A/ A

T

2

Wi |—=|n

N
or [d]
=N

W o,

TABLE 14.1 TYPES OF INDEXES BASED ON THE PROPERTIES OF THE INDEXING FIELD

INDEX FIELD USED FOR
ORDERING THE FILE

INDEX FIELD NOT USED FOR
ORDERING THE FILE

Indexing field is key Primary index
Indexing field is nonkey Clustering index

TABLE 14.2 PROPERTIES OF INDEX TYPES

Secondary index (Key)
Secondary index (NonKey)

TYPE NUMBER OF (FIRST-LEVEL) DENSE OR BLOCK ANCHORING ON
OF INDEX ENTRIES NONDENSE THE DATA FILE
INDEX)
Primary Number of blocks in Nondense Yes
data file
Clustering Number of distinct index Nondense Yes/no?
field values
Secondary Number of records in Dense No
(key) data file
Secondary Number of records” or Dense or No
(nonkey) Number of distinct index field values® Nondense

2Yes if every distinct value of the ordering field starts a new block; no otherwise.
bFor option 1.
“For options 2 and 3.

14

Multi-Level Indexes

Because a single-level index is an ordered file, we
can create a primary index to the index itself; in this
case, the original index file is called the first-level
Index and the index to the index is called the
second-level index.

We can repeat the process, creating a third, fourth,
..., top level until all entries of the top level fit in one
disk block

A multi-level index can be created for any type of
first-level index (primary, secondary, clustering) as
long as the first-level index consists of more than
one disk block

15

TWO-LEVEL INDEX

FIRST (BASE)

DATAFILE

15

24

JAbiAt

D—
29
SECOND (TOP) =
LEVEL %
B -«
Y
2 J / » il 2
= — A g a
55 a8 51 =)
B) \ =
51
52
55
/ >
55 // 63
& - L
Al T 7n
80 i 78
\ m
82
B | e = 85
89

A two-level primary
index resembling
ISAM (Indexed
Sequential Access
Method)
organization.

16

Multi-Level Indexes

Such a multi-level index is a form of search
tree; however, insertion and deletion of new
Index entries Is a severe problem because
every level of the index Is an ordered file.

17

A node in a search tree with pointers to

subtrees below it.

Ki-

q-1

-—0

K._;<X<K|

Kg-1<X

18

A search tree of order p = 3.

Null tree pointer

E| Tree node pointer

T R

VAN
/ O\

Dynamic Multilevel Indexes Using B-
Trees and B+-Trees

Because of the insertion and deletion problem, most
multi-level indexes use B-tree or B+-tree data
structures, which leave space in each tree node
(disk block) to allow for new index entries

These data structures are variations of search trees
that allow efficient insertion and deletion of new
search values.

In B-Tree and B+-Tree data structures, each node
corresponds to a disk block.

Each node is kept between half-full and completely
full.

20

Dynamic Multilevel Indexes Using B-
Trees and B+-Trees (cont.)

An insertion into a node that is not full is quite
efficient; if a node is full, the insertion causes
a split into two nodes

Splitting may propagate to other tree levels

A deletion is quite efficient if a node does not
become less than half full

If a deletion causes a node to become less
than half full, it must be merged with
neighboring nodes

21

Difference between B-tree and B+-tree

In a B-tree, pointers to data records exist at
all levels of the tree

In a B+-tree, all pointers to data records exist
at the leaf-level nodes

A B+-tree can have less levels (or higher
capacity of search values) than the
corresponding B-tree

22

(a)

B-tree structures. (a) A node in a B-tree with q -1
search values. (b) A B-tree of order p = 3. The values
were inserted in the order 8, 5,1, 7, 3, 12, 9, 6.

;Pt K, Er1 .Pz - Kis f’l’,_, 51 K, fr1 Kq-1 frq 1 ’Pq\
or v ¥
tree Y y Py tree
I data data .
o pg.anﬁr Y pg.amt%, pointer pointer pointer
tree
X pointer X X
X<K, K, <X<K; Kg-1<X
®) e| Tree node pointer
. EE] l\ o| Data pointer
Null tree pointer

-

23

The nodes of a B+-tree. (a) Internal node of a B+-tree with q -1 search
values. (b) Leaf node of a B+-tree with q — 1 search values and q — 1 data
pointers.

(@)

Py Ky Ki-1 | Pi K; K

®
tree l tree trex
pointer pointer pointer

X=K K41 <X=K Kg-1 <X
(b) pointer to next
K1 Pr K2 Pr Ki Pr Kq—1 Pl'q_1 Pnext o » leaf node
L < L/ * ? in tree
Y Y Y Y
data data data data

pointer pointer pointer pointer

EXAMPLE 4: Suppose the search field is % = 9 bytes long, the disk block size is B = 512
bytes, 2 recond (data) poinver is P, = 7 bytes, and a block pointer is P = 6 bywes, BEach B-

tree node can bave g most potree podnters, p— | data poanters, atd p — | search key held
vilues (see Figure 14.10a). These must bir into a single disk block ot each Betree node is to
coerespond to a disk block. Hence, we must have:

p*P+lp-D*PF+V=B
(p¥6)+ ((p— 1}*(7+ 9} =311
(22 * p) = 518

We can choose pto be a large value that satishies the above inequality, which gives p = 13
ip = 24 i5s not chosen becawse of the reasons given nexc).

25

EXAMPLE 5: Suppose thar the search ficld of Example 4 s a nonordering key teld, and
we construct a Berree on this feld. Assume thar each node of the B-tree 1 69 percent full.
Each node, on the average, will have p * 060 = 23 * 0,69 or approximarely 16§ pointers
and, hence, 15 search key held values. The average fan-out fo =16, We can start at the
oot andd see low many values and pointers can exist, on the average, at each subsequern

level:

B | node 13 entries L6 pointers
Level 11 16 nodes 240 entries 236 pointers
Level I 256 nodes 1840 entries 4096 poingers
Level 3: 4% nodes 61,440 enrries

At each level, we calculated the number of entries by multiplying the roral number of
roinfers at the previous level by 15, the average number of entries in each node. Hence,
for the given block size, pointer size, and search key held size, a twoelevel Betree hokds
3540 + 240 + 15 = 4095 entries on the average; a three-level B-tree holds 65,535 entries

on the average.

23*0.69 = 15.87 = 16 26

EXAMPLE & To caleulare the order p of a B*-tree, suppose thar the search key held s
W o= 9 bytes long, the block size is B = 512 bytes, a record pointer is P, = 7 bytes, and a
block pointer is P = & bytes, as in Example 4. An internal node of the B -tree can have up
e p tree pointers and p — 1 search field values; these must fit into a single Block. Hence,
we have:

ip* P+ lp - 11"V} =h
(p*6)+{lp—1)*9 =512
(15 * p} =511

We can choose p ro be the largest value satisfying the above inequality, which gives
p = 2. This is larger than the valee of 13 for the B-tree, rewlting inoa |.;||.'g-|::|' tar-cuat andd
mare eneries in each intemal node of a B -tree than in the corresponding B-tree. The ledf
nodes of the B -tree will have the same number of values and pointers, except thart the
polnters are data potnrers and a nexe pointer, Hence, the order py, for the leaf nodes can
be calculared as tollows:

Py “IF, VI +P=R

(P * 17+ 91 + 6 5 512
16 ™ pd = 306

It tollows thar each leaf node can hold up v py, = 31 key value/data pointer combina-
tions, assuming thar the data potnters are record pointers. -

EXAMPLE 1 Eiuhpuew that we constmct a B -tree o the feld ¢J|-E!{H.1'I:'I]'!I|E &, To caleulare
she APPTOXimEALe riumber of entries of the B -tree, we asanme that each node is 69 percent
fall. On the average, each inrernal node will have 34 * 0069 or approximarely 13 pointers,
aned hemce 2.2 values. Each leat node, on the average, will hold 0,69 * p =069 * 3] or

spproimstely 21 data recoed pointers. A B -tree will have the tollowing average number
of entries at each level:

Roat: | rusde 21 enrries 23 poincers
Level 1: 13 nodes S06 entres 529 pointers
Level 2: 329 nodes [1.638 entries | £, 167 poinress
Leaf level: 12,167 nodes 235,507 record pointers

For the block sizce, poinrer size, and search teld size given above, a three-level B -tree
holds up to 299,507 record podnters, on the average. Compare this to the 63,535 enrries
tor the corresponding B-tree in Example 3.

34*0.69 = 23.46 = 23
31*0.69 = 21.39 = 21 28

INSERTION SECUENCE 8,5,1,7,3,12,8,8

[EHEHL. >~

ICACEAT]

An example of
insertion in a B+-tree
with g =3 and p, = 2.

29

DELETION SEQUENCE: 5, 12,9

An example of deletion
from a B+-tree.

EECHN, g OV . o EAOHN g K0 H—*I/Ej@ I

Delete 9 underfow with
m.wmw.oon&%m

CE

30

