
1

BK
TP.HCM

2010

dce

Advanced Computer 

Architecture

Tran Ngoc Thinh

HCMC University of Technology

http://www.cse.hcmut.edu.vn/~tnthinh/aca

2010

dce

Advanced Computer Architecture 2

• Class
– Time and venue: Thursdays, 6:30am - 09:00am, 605B4

– Web page:

• http://www.cse.hcmut.edu.vn/~tnthinh/aca

• Textbook:
– John Hennessy, David Patterson, Computer Architecture: A 

Quantitative Approach, 3rd edition, Morgan Kaufmann Publisher, 2003 

– Stallings, William, Computer Organization and Architecture, 7th 

edition, Prentice Hall International, 2006

– Kai Hwang, Advanced Computer Architecture : Parallelism, 

Scalability, Programmability, McGraw-Hill, 1993 

– Kai Hwang & F. A. Briggs, Computer Architecture and Parallel 

Processing, McGraw-Hill, 1989 

– Research papers on Computer Design and Architecture  from  IEEE and 

ACM conferences, transactions and journals

Administrative Issues

http://www.cse.hcmut.edu.vn/~tnthinh/aca
http://www.cse.hcmut.edu.vn/050007068/
http://www.cse.hcmut.edu.vn/~tnthinh/aca


2

2010

dce

Advanced Computer Architecture 3

• Grades

– 10% homeworks

– 20% presentations

– 20% midterm exam

– 50% final exam

Administrative Issues (cont.)

2010

dce

Advanced Computer Architecture 4

Administrative Issues (cont.)

• Personnel

– Instructor: Dr. Tran Ngoc Thinh 
• Email: tnthinh@cse.hcmut.edu.vn

• Phone: 8647256 (5843)

• Office: A3 building

• Office hours: Thursdays, 09:00-11:00

– TA: Mr. Tran Huy Vu
• Email:vutran@cse.hcmut.edu.vn

• Phone: 8647256 (5843) 

• Office: A3 building 

• Office hours:



3

2010

dce

Advanced Computer Architecture

Course Coverage

• Introduction 

– Brief history of computers

– Basic concepts of computer architecture. 

• Instruction Set Principle

– Classifying Instruction Set Architectures

– Addressing Modes,Type and Size of Operands 

– Operations in the Instruction Set, Instructions for Control 

Flow, Instruction Format 

– The Role of Compilers 

5

2010

dce

Advanced Computer Architecture

Course Coverage
• Pipelining: Basic and Intermediate Concepts

– Organization of pipelined units, 

– Pipeline hazards, 

– Reducing branch penalties, branch prediction strategies. 

• Instructional Level Parallelism

– Temporal partitioning

– List-scheduling approach

– Integer Linear Programming

– Network Flow

– Spectral methods

– Iterative improvements

6



4

2010

dce

Advanced Computer Architecture

Course Coverage

• Memory Hierarchy Design

– Memory hierarchy 

– Cache memories 

– Virtual memories

– Memory management. 

• SuperScalar Architectures

– Instruction level parallelism and machine parallelism

– Hardware techniques for performance enhancement

– Limitations of the superscalar approach 

• Vector Processors

7

2010

dce

Advanced Computer Architecture

Course Requirements

• Computer Organization & Architecture 
– Comb./Seq. Logic, Processor, Memory, Assembly 

Language 

• Data Structures / Algorithms 

– Complexity analysis, efficient implementations 

• Operating Systems 

– Task scheduling, management of processors, 

memory, input/output devices 

8



5

2010

dce

Advanced Computer Architecture

 1950s to 1960s: Computer Architecture Course: Computer 

Arithmetic

 1970s to mid 1980s:  Computer Architecture Course: 

Instruction Set Design, especially ISA appropriate for 

compilers

 1990s: Computer Architecture Course:

Design of CPU, memory system, I/O system, 

Multiprocessors, Networks

 2000s: Multi-core design, on-chip networking, parallel 

programming paradigms, power reduction

 2010s: Computer Architecture Course: Self adapting 

systems? Self organizing structures?

DNA Systems/Quantum Computing?

Computer Architecture‟s Changing Definition

9

2010

dce

Advanced Computer Architecture

• Role of a computer architect:  

• To design and engineer the various levels 

of a computer system to maximize 

performance and programmability within 

limits of technology and cost

Computer Architecture

10



6

2010

dce

Advanced Computer Architecture

• S/W and H/W consists of hierarchical layers of abstraction, 
each hides details of lower layers from the above layer

• The instruction set arch. abstracts the H/W and S/W 
interface and allows many implementation of varying cost 
and performance to run the same S/W

Levels of Abstraction

Instruction Set Architecture

Applications

Operating System

FirmwareCompiler

Instruction Set Processor I/O System

Datapath & Control

Digital Design

Circuit Design

Layout

11

2010

dce

Advanced Computer Architecture

The Task of Computer Designer 
• determine what attribute are important for a 

new machine

• design a machine to maximize cost 
performance

• What are these Task?

– instruction set design

– function organization

– logic design

– implementation
• IC design, packaging, power, cooling….

– …

12



7

2010

dce

Advanced Computer Architecture

History

• Big Iron” Computers:

– Used vacuum tubes, electric relays and bulk magnetic 
storage devices. No microprocessors. No memory.

• Example: ENIAC (1945), IBM Mark 1 (1944

13

2010

dce

Advanced Computer Architecture

History

• Von Newmann:

– Invented EDSAC (1949).

– First Stored Program Computer.  Uses Memory.

• Importance: We are still using The same basic 
design.

14



8

2010

dce

Advanced Computer Architecture

The Processor Chip

15

2010

dce

Advanced Computer Architecture 16

Intel 4004 Die Photo

• Introduced in 1970

– First microprocessor

• 2,250 transistors

• 12 mm2

• 108 KHz



9

2010

dce

Advanced Computer Architecture 17

Intel 8086 Die Scan

• 29,0000 transistors

• 33 mm2

• 5 MHz

• Introduced in 1979

– Basic architecture of 

the IA32 PC

2010

dce

Advanced Computer Architecture 18

Intel 80486 Die Scan

• 1,200,000 

transistors

• 81 mm2

• 25 MHz

• Introduced in 1989

– 1st pipelined 

implementation of 

IA32



10

2010

dce

Advanced Computer Architecture 19

Pentium Die Photo

• 3,100,000 

transistors

• 296 mm2

• 60 MHz

• Introduced in 1993

– 1st superscalar 

implementation of 

IA32

2010

dce

Advanced Computer Architecture 20

Pentium III

• 9,5000,000 

transistors

• 125 mm2

• 450 MHz

• Introduced in 1999



11

2010

dce

Advanced Computer Architecture

Moore‟s Law

• “Cramming More Components onto Integrated Circuits”
– Gordon Moore, Electronics, 1965

• # on transistors on cost-effective integrated circuit double every 18 months

2010

dce

Advanced Computer Architecture

Performance Trend

• In general, 
tradeoffs 
should 
improve 
performance

• The natural 
idea here…  
HW cheaper, 
easier to 
manufacture 
 can make 
our processor 
do more 
things…

22



12

2010

dce

Advanced Computer Architecture

Price Trends (Pentium III)

23

2010

dce

Advanced Computer Architecture

Price Trends (DRAM memory)

24



13

2010

dce

Advanced Computer Architecture

Technology constantly on the move!
• Num of transistors not limiting factor

– Currently ~ 1 billion transistors/chip 

– Problems: 

• Too much Power, Heat, Latency

• Not enough Parallelism

• 3-dimensional chip technology?
– Sandwiches of silicon

– “Through-Vias” for communication 

• On-chip optical connections?
– Power savings for large packets

• The Intel® Core™ i7 
microprocessor (“Nehalem”)
– 4 cores/chip

– 45 nm, Hafnium hi-k dielectric 

– 731M Transistors 

– Shared L3 Cache - 8MB 

– L2 Cache - 1MB (256K x 4) 

Nehalem

25

2010

dce

Advanced Computer Architecture

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

P
e

rf
o

rm
a

n
ce

 (
vs

. 
V

A
X

-1
1

/7
8

0
) 

  
  

  
  

  
  

 

25%/year

52%/year

??%/year

Crossroads: Uniprocessor Performance

• VAX : 25%/year 1978 to 1986

• RISC + x86: 52%/year 1986 to 2002

• RISC + x86: ??%/year 2002 to present

From Hennessy and Patterson, 

Computer Architecture: A Quantitative 

Approach, 4th edition, October, 2006

26



14

2010

dce

Advanced Computer Architecture

Limiting Force: Power Density

27

2010

dce

Advanced Computer Architecture

• Old Conventional Wisdom: Power is free, Transistors expensive

• New Conventional Wisdom: “Power wall” Power expensive, Xtors free 

(Can put more on chip than can afford to turn on)

• Old CW: Sufficiently increasing Instruction Level Parallelism via compilers, 

innovation (Out-of-order, speculation, VLIW, …)

• New CW: “ILP wall” law of diminishing returns on more HW for ILP 

• Old CW: Multiplies are slow, Memory access is fast

• New CW: “Memory wall” Memory slow, multiplies fast

(200 clock cycles to DRAM memory, 4 clocks for multiply)

• Old CW: Uniprocessor performance 2X / 1.5 yrs

• New CW: Power Wall + ILP Wall + Memory Wall = Brick Wall

– Uniprocessor performance now 2X / 5(?) yrs

 Sea change in chip design: multiple “cores” 

(2X processors per chip / ~ 2 years)

• More power efficient to use a large number of simpler processors 

rather than a small number of complex processors

Crossroads: Conventional Wisdom in Comp. Arch

28



15

2010

dce

Advanced Computer Architecture

Sea Change in Chip Design
• Intel 4004 (1971): 

– 4-bit processor,

– 2312 transistors, 0.4 MHz, 

– 10 m PMOS, 11 mm2 chip

• RISC II (1983): 

– 32-bit, 5 stage 

– pipeline, 40,760 transistors, 3 MHz, 

– 3 m NMOS, 60 mm2 chip

• 125 mm2 chip, 65 nm CMOS 

= 2312 RISC II+FPU+Icache+Dcache

– RISC II shrinks to ~ 0.02 mm2 at 65 nm

– Caches via DRAM or 1 transistor SRAM (www.t-ram.com) ?

– Proximity Communication via capacitive coupling at > 1 TB/s ?

(Ivan Sutherland @ Sun / Berkeley)

• Processor is the new transistor? 

29

2010

dce

Advanced Computer Architecture

ManyCore Chips: The future is here

• “ManyCore” refers to many processors/chip
– 64?  128?  Hard to say exact boundary

• How to program these?
– Use 2 CPUs for video/audio
– Use 1 for word processor, 1 for browser
– 76 for virus checking???

• Something new is clearly needed here…

• Intel 80-core multicore chip (Feb 2007)
– 80 simple cores

– Two FP-engines / core

– Mesh-like network

– 100 million transistors

– 65nm feature size

• Intel Single-Chip Cloud 
Computer  (August 2010)
– 24 “tiles” with two IA 

cores per tile 

– 24-router mesh network 
with 256 GB/s bisection

– 4 integrated DDR3 memory controllers

– Hardware support for message-passing 

30

http://www.t-ram.com/
http://www.t-ram.com/
http://www.t-ram.com/


16

2010

dce

Advanced Computer Architecture

The End of the Uniprocessor Era

Single biggest change in the history of 

computing systems

31

2010

dce

Advanced Computer Architecture

The End of the Uniprocessor Era

• Multiprocessors imminent in 1970s, „80s, „90s, …

• “… today‟s processors … are nearing an impasse as technologies 
approach the speed of light..”

David Mitchell, The Transputer: The Time Is Now (1989)

•  Custom multiprocessors strove to lead uniprocessors

 Procrastination rewarded: 2X seq. perf. / 1.5 years

• “We are dedicating all of our future product development to 
multicore designs. … This is a sea change in computing”

Paul Otellini, President, Intel (2004) 

• Difference is all microprocessor companies switch to multicore 
(AMD, Intel, IBM, Sun; all new Apples 2-4 CPUs) 

 Procrastination penalized: 2X sequential perf. / 5 yrs

 Biggest programming challenge: 1 to 2 CPUs

32



17

2010

dce

Advanced Computer Architecture

Problems with Sea Change
• Algorithms, Programming Languages, Compilers, 

Operating Systems, Architectures, Libraries, … not ready 
to supply Thread Level Parallelism or Data Level 
Parallelism for 1000 CPUs / chip
• Need whole new approach

• People have been working on parallelism for over 50 years without 
general success

• Architectures not ready for 1000 CPUs / chip
• Unlike Instruction Level Parallelism, cannot be solved by just by 

computer architects and compiler writers alone, but also cannot be 
solved without participation of computer architects

• PARLab: Berkeley researchers from many backgrounds 
meeting since 2005 to discuss parallelism
– Krste Asanovic, Ras Bodik, Jim Demmel, Kurt Keutzer, John 

Kubiatowicz, Edward Lee, George Necula, Dave Patterson, Koushik 
Sen, John Shalf, John Wawrzynek, Kathy Yelick, …

– Circuit design, computer architecture, massively parallel computing, 
computer-aided design, embedded hardware and software, 
programming languages, compilers, scientific programming, and 
numerical analysis

33

2010

dce

Advanced Computer Architecture

Computer Design Cycle

Performance

Technology

and Cost

Evaluate Existing

Systems for 

Bottlenecks

Simulate New

Designs and

Organizations

Implement Next

Generation System

Benchmarks

Workloads

Implementation

Complexity

34



18

2010

dce

Advanced Computer Architecture

Computer Design Cycle

Evaluate Existing

Systems for 

Bottlenecks
Benchmarks

Performance
Technology and cost

The computer design is evaluated for bottlenecks using 

certain benchmarks to achieve the optimum performance..

1

35

2010

dce

Advanced Computer Architecture

Performance (Metric)

• Time/Latency: The wall clock or CPU elapsed 

time.

• Throughput: The number of results per second.

Other measures such as MIPS, MFLOPS, clock frequency 

(MHz), cache size do not make any sense.

36



19

2010

dce

Advanced Computer Architecture

Performance (Measuring Tools)

• Benchmarks: 

• Hardware: Cost, delay, area, power 

consumption

• Simulation (at  levels - ISA, RT, Gate, 

Circuit)

• Queuing Theory

• Fundamental “Laws”/Principles

37

2010

dce

Advanced Computer Architecture

Computer Design Cycle

Evaluate Existing Systems for Bottlenecks 

using Benchmarks

1: Performance

Simulate New Designs 

and Organizations
Workloads

2: Technology

The Technology Trends motivate new designs. These designs are 

simulated to evaluate the performance for different levels of 

workloads. Simulation helps in keeping the result verification

38



20

2010

dce

Advanced Computer Architecture

Technology Trends: Computer Generations

• Vacuum tube 1946-1957 1st Gen.

• Transistor - 1958-1964 2nd Gen.

• Small scale integration 1965-1968
– Up to 100 devices/chip

• Medium scale integration 1969-1971 3rd Gen.
– 100-3,000 devices/chip

• Large scale integration 1972-1977
– 3,000 - 100,000 devices/chip

• Very large scale integration 1978 on..  4th Gen.
– 100,000 - 100,000,000 devices/chip

• Ultra large scale integration
– Over 100,000,000 devices/chip

39

2010

dce

Advanced Computer Architecture

Computer Design Cycle

Implement Next Generation SystemImplement Next Generation System

Implementation Complexity

3: Cost 1: Performance

2: Technology

The systems are implemented using the 

latest technology to obtain cost effective, 

high performance solution - the 

implementation complexities are given due 

consideration

40



21

2010

dce

Advanced Computer Architecture

Price Verses Cost

The relationship between cost and price is 

complex one

The cost is the total amount spends to produce a 

product

The price is the amount for which a finished good 

is sold. 

The cost passes through different stages before it 

becomes price. 

A small change in cost may have a big impact on 

price

41

2010

dce

Advanced Computer Architecture

Price vs. Cost

• Manufacturing Costs: Total amount spent to produce a 

component

- Component Cost: Cost at which the components are 

available to the designer. - It ranges from 40% to 50% of 

the list price of the product. 

- Direct cost (Recurring costs): Labor, purchasing 

scrap, warranty – 4% - 16 %  of list price

- Gross margin – Non-recurring cost: R&D, 

marketing, sales, equipment, rental, maintenance, 

financing cost, pre-tax profits, taxes

42



22

2010

dce

Advanced Computer Architecture

Price vs. Cost

• List Price: 

•Amount for which the finished good is sold; 

•it includes Average Discount of 15% to 35% of the as 

volume discounts and/or retailer markup

0%

20%

40%

60%

80%

100%

Mini W/S PC

Averag e Discount

Gross Marg in

Direct Costs

Component Costs

43

2010

dce

Advanced Computer Architecture

Cost-effective IC Design: Price-Performance Design

• Yield: Percentage of manufactured components 

surviving testing

• Volume: increases manufacturing hence decreases 

the list price and improves the  purchasing efficiency

• Feature Size: the minimum size of a transistor or wire 

in either x or y direction 

44



23

2010

dce

Advanced Computer Architecture

• Reduction in feature size from 10 microns in 

1971 and 0.045 in 2008 has resulted in:

- Quadratic rise in transistor count

- Linear increase in performance

- 4-bit to 64-bit microprocessor

- Desktops have replaced time-sharing 

machines

Cost-effective IC Design: Price-Performance Design

45

2010

dce

Advanced Computer Architecture

Cost of Integrated Circuits

Manufacturing Stages: 

The Integrated circuit manufacturing passes 

through many stage: 

Wafer growth and testing 

Wafer chopping it into dies

Packaging the dies to chips

Testing a chip.

46



24

2010

dce

Advanced Computer Architecture

Cost of Integrated Circuits

Die: is the square area of the wafer containing the 

integrated circuit

See that while fitting dies on the wafer the small wafer area 

around the periphery goes waist

Cost of a die: The cost of a die is determined from cost of 

a wafer; the number of dies fit on a wafer and the 

percentage of dies that work, i.e., the yield of the die. 

47

2010

dce

Advanced Computer Architecture

Cost of Integrated Circuits

The cost of integrated circuit can be determined as ratio of 

the total cost; i.e., the sum of the costs of die, cost of testing 

die, cost of packaging and the cost of final testing a chip; to 

the final test yield.

Cost of IC= 

die cost + die testing cost + packaging cost + final testing cost

final test yield 

• The cost of die is the ratio of the cost of the wafer to the

product of the dies per wafer and die yield

Die cost = Cost of wafer 

dies per wafer x die yield

48



25

2010

dce

Advanced Computer Architecture

Cost of Integrated Circuits

• The number of dies per wafer is determined by the dividing 

the wafer area (minus the waist wafer area near the round 

periphery) by the die area

Dies per wafer =

π (wafer diameter/2)2 π (wafer diameter) 

die area √ 2 x die area

Example: For die of 0.7 cm on a side, find the number 

of dies per wafer of 30 cm diameter

Answer:

[Wafer area / Die Area]  - Wafer Waist area

= π (30/2)2 / 0.49 - π (30) / √ (2 x 0.49)

= 1347 dies

49

2010

dce

Advanced Computer Architecture

Calculating Die Yield

• Die yield is the fraction or percentage of good dies on a 

wafer number

• Wafer yield accounts for completely bad wafers so need not 

be tested

• Wafer yield corresponds to on  defect density by α which 

depends on number of masking levels good estimate for 

CMOS is 4.0

Example:

The yield of a die, 0.7cm on a side, with defect density of 0.6/cm2 

= (1+[0.6x0.49]/4.0) -4 = 0.75

50













 


Area Die  Area)t Defect/Uni(

1  Yield Wafer DieYield



26

2010

dce

Advanced Computer Architecture

Volume vs. Cost
• Rule of thumb on applying learning curve to 

manufacturing:

“When volume doubles, costs reduce 10%” 
    A DEC View of Computer Engineering by C. G. Bell,  J. C. Mudge, and 

J. E. McNamara, Digital Press, Bedford, MA., 1978.

51

 1990 1992 1994 1997

PC 23,880,898 33,547,589 44,006,000 65,480,000 

WS 407,624 584,544 679,320 978,585 

Ratio 59 57 65 67

• 2x = 65 => X = 6.0 

• Since doubling value reduces cost by 10%, costs reduces to 

(0.9)6.0 = 0.53 of the original price.

PC costs are 47% less than workstation costs for whole market. 

2010

dce

Advanced Computer Architecture

High Margins on High-End Machines

• R&D considered return on investment (ROI) 10%
– Every $1 R&D must generate $7 to $13 in sales

• High end machines need more $ for R&D

• Sell fewer high end machines 
– Fewer to amortize R&D

– Much higher margins

• Cost of 1 MB Memory (January 1994):
PC $40 (Mac Quadra)

WS     $42 (SS-10)

Mainframe $1920 (IBM 3090)

Supercomputer $600 (M90 DRAM)

$1375 (C90 15 ns SRAM)

52



27

2010

dce

Advanced Computer Architecture

Recouping Development Cost on Low Volume 

Microprocessors?

• Hennessy says MIPS R4000 cost $30M to develop

• Intel rumored to invest $100M on 486

• SGI/MIPS sells 300,000 R4000s over product lifetime?

• Intel sells 50,000,000 486s?

• Intel must get $100M from chips ($2/chip)

• SGI/MIPS can get $30M from margin of workstations vs. 

chips vs. $100/chip

• Alternative: SGI buys chips vs. develops them

53

2010

dce

Advanced Computer Architecture

Metrics of Performance

MIPS: Millions of Instructions per second

MFLOPS: millions of FP operations per sec.

Cycles per second (clock rate)

Megabytes per second

Compiler

Programming 

Language

Application

Instruction Set Architecture

Answers per month

Operations per second

Datapath

Control

Transistors

Wire – I/OPins/

Function Units

54



28

2010

dce

Advanced Computer Architecture

Does Anybody Really Know What Time it is?

• User CPU Time (Time spent in program): 90.7 sec

• System CPU Time (Time spent in OS): 12.9 sec

• Elapsed Time (Response Time = 2 min 39 sec =159 

Sec.)

• (90.7+12.9)/159 * 100 = 65%, % of lapsed time that is 

CPU time. 45% of the time spent in I/O or running 

other programs

UNIX Time Command: 90.7u 12.9s 2:39 65%

55

2010

dce

Advanced Computer Architecture

Time

CPU time
– time the CPU is computing

– not including the time waiting for I/O or running other 
program

User CPU time
– CPU time spent in the program

System CPU time 
– CPU time spent in the operating system performing 

task requested by the program decrease execution  
time 

CPU time = User CPU time + System CPU time 

56



29

2010

dce

Advanced Computer Architecture

Performance

System Performance

– elapsed time on unloaded system

CPU performance

– user CPU time on an unloaded system

57

2010

dce

Advanced Computer Architecture

Two notions of “performance”

° Time to do the task  (Execution Time)

– execution time, response time, latency

° Tasks per day, hour, week, sec, ns. .. 

– throughput, bandwidth

Response time and throughput often are in opposition

DC to Paris

6.5 hours

3 hours

Plane

Boeing 747

BAD/Sud 
Concorde

Speed

610 mph

1350 mph

Passengers

470

132

Throughput 

286,700

178,200

Which has higher performance?

58



30

2010

dce

Advanced Computer Architecture

Example
• Time of Concorde vs. Boeing 747?

• Concord is 1350 mph / 610 mph = 2.2 times faster

= 6.5 hours / 3 hours

• Throughput of Concorde vs. Boeing 747 ?

• Concord is 178,200 pmph / 286,700 pmph = 0.62 
“times faster”

• Boeing  is 286,700 pmph / 178,200 pmph = 1.6   “times 
faster”

• Boeing is 1.6 times (“60%”)faster in terms of throughput

• Concord is 2.2 times (“120%”) faster in terms of flying time

We will focus primarily on execution time for a single job

59

2010

dce

Advanced Computer Architecture

Computer Performance Measures: Computer Performance Measures: Program Program 
Execution TimeExecution Time  ((11//22))

• For a specific program compiled to run on a 

specific machine (CPU) “A”, the following 

parameters are provided: 

– The total instruction count of the program.

– The average number of cycles per instruction 

(average CPI).

– Clock cycle of machine “A”

60



31

2010

dce

Advanced Computer Architecture

Computer Performance Measures: Computer Performance Measures: Program Program 
Execution TimeExecution Time  ((22//22))

• How can one measure the performance of 
this machine running this program?
– Intuitively the machine is said to be faster or has better 

performance running this program if the total execution time is 
shorter. 

– Thus the inverse of the total measured program execution 
time is  a possible performance measure or metric:

PerformanceA =   1  /   Execution TimeA

How to compare performance of different machines?

What factors affect performance?  How to improve 
performance?!!!!

61

2010

dce

Advanced Computer Architecture

Comparing Computer Performance Using Execution 

Time

• To compare the performance of two machines (or CPUs)  

“A”, “B” running a given specific program:

PerformanceA =   1  /   Execution TimeA

PerformanceB =   1  /   Execution TimeB

• Machine A is  n times faster than machine B means  (or 

slower? if n < 1) :

Speedup = n =                               =
PerformanceA

PerformanceB

Execution TimeB

Execution TimeA

62



32

2010

dce

Advanced Computer Architecture

Example
For a given program:

Execution time on machine A:    ExecutionA =  1  second

Execution time on machine B:   ExecutionB =  10  seconds

The performance of machine A  is 10 times the performance of   

machine B when running this program, or:  Machine A is said to be 

10 times faster than machine B when running this program. 

The two CPUs may target different ISAs  provided

the program is written in a high level language (HLL)

10
1

10
                           

A
TimeExecution 

B
TimeExecution 

     

B
ePerformanc

A
ePerformanc

Speedup





63

2010

dce

Advanced Computer Architecture

CPU Execution Time: The CPU Equation

• A program is comprised of a number of instructions executed ,  I

– Measured in: instructions/program

• The average instruction executed takes a number of cycles per 

instruction (CPI) to be completed.   

– Measured in:    cycles/instruction,  CPI

• CPU has a fixed clock cycle time  C  = 1/clock rate

– Measured in: seconds/cycle 

• CPU execution time is the product of the above three parameters as 

follows:

CPU time  =  Seconds   = Instructions  x  Cycles       x   SecondsCPU time  =  Seconds   = Instructions  x  Cycles       x   Seconds

Program         Program      Instruction          Cycle

T   =                 I     x     CPI    x     C
execution Time

per program in seconds

Number of 

instructions executed

Average CPI for program CPU Clock Cycle

64



33

2010

dce

Advanced Computer Architecture

CPU Execution Time: Example

• A Program is running on a specific machine with the 

following parameters:

– Total executed instruction count:   10,000,000  instructions 

Average CPI for the program:   2.5  cycles/instruction.

– CPU clock rate:  200 MHz. (clock cycle = 5x10-9 seconds)

• What is the execution time for this program:

CPU time =  Instruction count  x  CPI x  Clock cycle

=     10,000,000          x   2.5  x   1 / clock rate 

=     10,000,000          x   2.5  x    5x10-9

=     .125  seconds

CPU time =  Seconds = Instructions  x  Cycles       x   SecondsCPU time =  Seconds = Instructions  x  Cycles       x   Seconds

Program Program          Instruction       Cycle

65

2010

dce

Advanced Computer Architecture

Factors Affecting CPU PerformanceFactors Affecting CPU Performance

CPU time =  Seconds = Instructions  x  Cycles       x   SecondsCPU time =  Seconds = Instructions  x  Cycles       x   Seconds

Program Program          Instruction       Cycle

CPI Clock Cycle C
Instruction

Count I

Program

Compiler

Organization
(CPU Design)

Technology
(VLSI)

Instruction Set

Architecture (ISA)

X 

X 

X 

X 

X 

X 

X X 

X 

66



34

2010

dce

Advanced Computer Architecture

Performance Comparison: Example
• From the previous example:  A Program is running on a 

specific machine with the following parameters:

– Total executed instruction count, I:     10,000,000 instructions

– Average CPI for the program:   2.5  cycles/instruction.

– CPU clock rate:  200 MHz.

• Using the same program with these changes: 

– A new compiler used:  New instruction count 9,500,000

New CPI:  3.0

– Faster CPU implementation:  New clock rate = 300 MHZ

• What is the speedup with the changes?

Speedup  =    (10,000,000  x   2.5  x  5x10-9) / (9,500,000  x 3  x  3.33x10-9 )

=     .125 /  .095 = 1.32

or 32 % faster after changes.

Speedup =   Old Execution Time = I x      CPI x   Clock cycleSpeedup =   Old Execution Time = Iold x      CPIold x   Clock cycleold

New Execution Time Inew x    CPInew x   Clock Cyclenew

67

2010

dce

Advanced Computer Architecture

Instruction Types & CPI
• Given a program with n types or classes of instructions 

executed on a given CPU with the following characteristics:

Ci =   Count of instructions of typei

CPIi =  Cycles per instruction for typei

Then:Then:

CPI  =   CPU Clock Cycles  /  Instruction Count I 

Where:  

Instruction Count  I  =   S Ci

 CPU clock cycles
i i

i

n

CPI C 



1

i = 1, 2, …. n



35

2010

dce

Advanced Computer Architecture

Instruction Types & CPI: An Example
• An instruction set has n= three instruction classes:

• Two code sequences have the following instruction counts:

• CPU cycles for sequence 1 = 2 x 1 + 1 x 2 + 2 x 3 = 10 cycles

CPI for sequence 1  =  clock cycles / instruction count  = 10 /5 = 2

• CPU cycles for sequence 2 = 4 x 1 + 1 x 2 + 1 x 3 = 9 cycles

CPI for sequence 2 = 9 / 6 = 1.5

Instruction class     CPI

A 1

B 2

C 3 

Instruction counts for instruction class

Code Sequence                      A                 B           C

1                                      2                  1            2

2                                      4                  1            1

For a specific 

CPU design

69

2010

dce

Advanced Computer Architecture

Instruction Frequency & CPI

• Given a program with  n types or classes of instructions 

with the following characteristics:

Ci =   Count of instructions of typei

CPIi =  Average cycles per instruction of typei

Fi =  Frequency or fraction of instruction typei  executed  

=  Ci/ total executed instruction count = Ci/ I

Then:

 



n

i
ii FCPICPI

1

Fraction of total execution time for instructions of type  i  =       
CPIi x Fi

CPI

70



36

2010

dce

Advanced Computer Architecture

Instruction Type Frequency & CPI: Instruction Type Frequency & CPI: A A RISC ExampleRISC Example

Typical Mix

Base Machine (Reg / Reg)

Op         Freq, Fi CPIi CPIi x Fi % Time

ALU 50% 1 .5 23% =  .5/2.2

Load 20% 5 1.0 45% =  1/2.2

Store 10% 3 .3 14% =  .3/2.2

Branch 20% 2 .4 18% =  .4/2.2

 



n

i
ii FCPICPI

1

CPIi x Fi

CPI

Sum = 2.2

Program Profile or Executed Instructions Mix

71

2010

dce

Advanced Computer Architecture

Performance Terminology
“X is n% faster than Y”  means:

ExTime(Y)   Performance(X)             n

--------- = --------------  =  1 +   -----

ExTime(X) Performance(Y)     100

n = 100(Performance(X) - Performance(Y))

Performance(Y)

n = 100(ExTime(Y) - ExTime(X))

ExTime(X)

Example: Y takes 15 seconds to complete a task, 

X takes 10 seconds. What % faster is X?

n =   100(15 - 10)  = 50%

10

72



37

2010

dce

Advanced Computer Architecture

Speedup

Speedup due to enhancement E:
ExTime w/o E       Performance w/  E

Speedup(E) = ------------- =  -------------------

ExTime w/ E        Performance w/o E

Suppose that enhancement E accelerates a fractionenhanced

of the task by a factor Speedupenhanced , and the 
remainder of the task is unaffected, then what is 

ExTime(E)  = ?

Speedup(E) = ?

73

2010

dce

Advanced Computer Architecture

Amdahl‟s Law
• States that the performance improvement to be gained 

from using some faster mode of execution is limited by 

the fraction of the time faster mode can be used

Speedup =         Performance for entire task using the enhancement

Performance for the entire task without using the enhancement

or  Speedup =            Execution time without the enhancement

Execution time for entire task using the enhancement

ExTimenew = ExTimeold x   (1 - Fractionenhanced) +  Fractionenhanced

Speedupoverall   =
ExTimeold

ExTimenew

Speedupenhanced

=

1

(1 - Fractionenhanced) +  Fractionenhanced

Speedupenhanced

74



38

2010

dce

Advanced Computer Architecture

Example of Amdahl‟s Law

• Floating point instructions improved to run 2X; but 
only 10% of actual instructions are FP

Speedupoverall =
1

0.95
= 1.053

ExTimenew = ExTimeold x  (0.9 +  .1/2) = 0.95 x ExTimeold

75

2010

dce

Advanced Computer Architecture

Performance Enhancement Calculations: Amdahl's Performance Enhancement Calculations: Amdahl's 

LawLaw
• The performance enhancement possible due to a given design 

improvement is limited by the amount that the improved feature is 
used  Amdahl‟s Law:

Performance improvement or speedup due to enhancement E:

Execution Time without E              Performance with E
Speedup(E) =   -------------------------------------- =   ---------------------------------

Execution Time with E              Performance without E

– Suppose that enhancement E accelerates a fraction F of the execution 
time  by a factor S and the remainder of the time is unaffected then:

Execution Time with E  =   ((1-F) + F/S) X  Execution Time without E 

Hence speedup is given by:

Execution Time without E                                1
Speedup(E) =   --------------------------------------------------------- =   --------------------

((1 - F) + F/S) X  Execution Time without E       (1 - F)  +  F/S

76



39

2010

dce

Advanced Computer Architecture

Pictorial Depiction of Amdahl‟s LawPictorial Depiction of Amdahl‟s Law

Before: 

Execution Time without enhancement E:  (Before enhancement is applied)

After: 

Execution Time with enhancement E:

Enhancement E  accelerates fraction F of original execution time by a factor of S

Unaffected fraction: (1- F) Affected fraction: F

Unaffected fraction: (1- F) F/S

Unchanged

Execution Time without enhancement E                  1
Speedup(E) =  ------------------------------------------------------ =   ------------------

Execution Time with enhancement E           (1 - F)  +  F/S

• shown normalized to 1 = (1-F) + F =1

77

2010

dce

Advanced Computer Architecture

Performance Enhancement ExamplePerformance Enhancement Example

• For the RISC machine with the following instruction mix given earlier:

Op Freq Cycles CPI(i) % Time

ALU 50% 1 .5 23%

Load 20% 5 1.0 45%

Store 10% 3 .3 14%

Branch 20% 2 .4 18%

• If a CPU design enhancement improves the CPI of load instructions 
from 5 to 2,  what is the resulting performance improvement from this 
enhancement:

Fraction enhanced =  F =  45%  or  .45

Unaffected fraction = 100% - 45% =  55%   or  .55

Factor of enhancement =  5/2 =  2.5

Using Amdahl‟s Law:

1                              1
Speedup(E)  =   ------------------ =   --------------------- =    1.37

(1 - F)  +  F/S          .55  +  .45/2.5

78



40

2010

dce

Advanced Computer Architecture

An Alternative Solution Using CPU Equation

Op Freq Cycles CPI(i) % Time

ALU 50% 1 .5 23%

Load 20% 5 1.0 45%

Store 10% 3 .3 14%

Branch 20% 2 .4 18%

• If a CPU design enhancement improves the CPI of load instructions from 5 to 2,  
what is the resulting performance improvement from this enhancement:

Old CPI = 2.2

New CPI =  .5 x 1 + .2 x 2 +  .1 x 3 + .2 x 2  =  1.6

Original Execution Time           Instruction count   x   old CPI   x  clock cycle
Speedup(E) =   ----------------------------------- =  ----------------------------------------------------------------

New Execution Time           Instruction count  x  new CPI  x  clock cycle

old CPI            2.2
=   ------------ =    --------- =  1.37

new CPI            1.6

Which is the same speedup obtained from Amdahl‟s Law in the first solution.

79

2010

dce

Advanced Computer Architecture

Extending Amdahl's Law To Multiple Enhancements

• Suppose that enhancement  Ei accelerates a fraction  Fi

of the execution time  by a factor  Si and the remainder 
of the time is unaffected then:

 



i i

i

i

i
X

S
F

F

Speedup

Time Execution   Original)1

Time  Execution   Original

)((

 



i i

i

i

i

S
F

F

Speedup

)( )1

1

(

Note:  All fractions Fi refer to original execution time before the

enhancements are applied.

.
80



41

2010

dce

Advanced Computer Architecture

Amdahl's Law With Multiple Enhancements: Example

• Three CPU performance enhancements are proposed with the following 
speedups and percentage of the code execution time affected:

Speedup1 = S1 =  10 Percentage1 = F1 =  20%

Speedup2 = S2 =  15 Percentage1 = F2 =  15%

Speedup3 = S3 =  30 Percentage1 = F3 =  10%           

• While all three enhancements are in place in the new design,  each 

enhancement affects a different portion of the code.

• What is the resulting overall speedup?

• Speedup =  1 /  [(1 - .2 - .15  - .1)   +   .2/10   +  .15/15  +  .1/30)]

=   1 /  [         .55                 +          .0333                         ]  

= 1 /  .5833  =    1.71

 



i i

i

i

i

S
F

F

Speedup

)( )1

1

(

81

2010

dce

Advanced Computer Architecture

Pictorial Depiction of Example
Before: 

Execution Time with no enhancements: 1

After: 

Execution Time with enhancements:  .55 + .02 + .01 + .00333  = .5833

Speedup =  1 / .5833 =  1.71 

Note:  All fractions (Fi , i = 1, 2, 3) refer to original execution time.

Unaffected, fraction:  .55

Unchanged

Unaffected, fraction:   .55 F1 = .2 F2 = .15 F3 = .1

S1 =  10 S2 =  15 S3 =  30

/ 10 / 30/ 15

82



42

2010

dce

Advanced Computer Architecture

Computer Performance Measures: MIPS Rating (1/3)

• For a specific program running on a specific CPU the MIPS rating is a 

measure of how many millions of instructions are executed per 

second:

MIPS  Rating =  Instruction count  /  (Execution Time x 106)

=  Instruction count  /  (CPU clocks x Cycle time x 106)

=  (Instruction count  x  Clock rate)  /  (Instruction 

count  x  CPI x 106) 

=   Clock rate  /  (CPI x 106)

• Major problem with MIPS rating: As shown above the MIPS rating 

does not account for the count of instructions executed (I). 

– A higher MIPS rating in many cases may not mean higher 

performance or better execution time.  i.e. due to compiler design 

variations.

85

2010

dce

Advanced Computer Architecture

• In addition the MIPS rating:

– Does not account for the instruction set architecture 

(ISA) used.

• Thus it cannot be used to compare computers/CPUs with 

different instruction sets.

– Easy to abuse: Program used to get the MIPS rating is 

often omitted.

• Often the Peak MIPS rating is provided for a given CPU which 

is obtained using a program comprised entirely of  instructions 

with the lowest CPI for the given CPU design which does not 

represent real programs.

Computer Performance Measures: MIPS Rating (2/3)

86



43

2010

dce

Advanced Computer Architecture

• Under what conditions can the MIPS rating be used to compare 
performance of different CPUs?

• The MIPS rating is only valid to compare the performance of 
different CPUs  provided that the following conditions are satisfied:

1 The same program is used

(actually this applies to all performance metrics)

2 The same ISA is used

3 The same compiler is used

 (Thus the resulting programs used to run on the CPUs and  obtain 
the MIPS rating are identical at the machine code level including the 
same instruction count)

Computer Performance Measures: MIPS Rating (3/3)

87

2010

dce

Advanced Computer Architecture

A MIPS Example (1)
• Consider the following computer:

Code from: A B C

Compiler 1 5 1 1

Compiler 2 10 1 1

Instruction counts (in millions) for each 

instruction class

The machine runs at 100MHz.

Instruction A requires 1 clock cycle, Instruction B requires 2 

clock cycles, Instruction C requires 3 clock cycles.

S CPIi x Ci 

i =1

n

CPI = 
Instruction Count

CPU Clock Cycles

Instruction Count
=!

Note
important
formula!

88



44

2010

dce

Advanced Computer Architecture

A MIPS Example (2)

CPI1 = 
(5 + 1 + 1) x 106

[(5x1) + (1x2) + (1x3)] x 106

10/7 = 1.43=

MIPS1 = 
1.43

100 MHz
69.9=

CPI2 = 
(10 + 1 + 1) x 106

[(10x1) + (1x2) + (1x3)] x 106

15/12 = 1.25=

MIPS2 = 
1.25

100 MHz
80.0=

So, compiler 2 has a higher

MIPS rating and should be

faster?

count cycles

cycles

89

2010

dce

Advanced Computer Architecture

A MIPS Example (3)

• Now let‟s compare CPU time:

CPU Time =  
Clock Rate

Instruction Count x CPI

= 0.10 secondsCPU Time1 =  
100 x 106

7 x 106 x 1.43

= 0.15 secondsCPU Time2 =  
100 x 106

12 x 106 x 1.25

Therefore program 1 is faster despite a lower MIPS!

!

Note
important
formula!

90



45

2010

dce

Advanced Computer Architecture

Computer Performance Measures :MFLOPS (1/2)

• A floating-point operation is an addition, subtraction, 
multiplication, or division operation applied to numbers 
represented by a single or a double precision floating-
point representation.

• MFLOPS, for a specific program running on a specific 
computer, is  a measure of millions of floating point-
operation (megaflops) per second:

MFLOPS = Number of floating-point operations  /  
(Execution time  x 106 )

• MFLOPS rating is a better comparison measure between 
different machines (applies even if ISAs are different) 
than the MIPS rating.
– Applicable even if ISAs are different 

91

2010

dce

Advanced Computer Architecture

Computer Performance Measures :MFLOPS (2/2)

• Program-dependent:   Different programs have 

different percentages of floating-point operations 

present.   i.e compilers have no floating- point 

operations and yield a MFLOPS rating of zero.

• Dependent on the type of floating-point 

operations present in the program.
– Peak MFLOPS rating for a CPU: Obtained using a program 

comprised entirely of the simplest floating point instructions (with 

the lowest CPI) for the given CPU design which does not 

represent real floating point programs.

92



46

2010

dce

Advanced Computer Architecture

CPU Benchmark Suites

• Performance Comparison: the execution time of the 
same workload running on two machines without running 
the actual programs

• Benchmarks: the programs specifically chosen to 
measure the performance. 

• Five levels of programs: in the decreasing order of 
accuracy

– Real Applications 

– Modified Applications 

– Kernels 

– Toy benchmarks 

– Synthetic benchmarks

93

2010

dce

Advanced Computer Architecture

SPEC: System Performance Evaluation Cooperative

• SPECCPU: popular desktop benchmark suite

– CPU only, split between integer and floating point programs

• First Round 1989: 10 programs yielding a single number – SPECmarks

• Second Round 1992: SPECInt92 (6 integer programs) and SPECfp92 (14 

floating point programs)

• Third Round 1995

– new set of programs: SPECint95 (8 integer programs) and SPECfp95 (10 

floating point) 

– “benchmarks useful for 3 years”

– Single flag setting for all programs: SPECint_base95, SPECfp_base95 

• SPECint2000 has 12 integer, SPECfp2000 has 14 integer pgms

• SPECCPU2006 to be announced Spring 2006

• SPECSFS (NFS file server) and SPECWeb (WebServer) added 

as server benchmarks

94


