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PREFAGE

This book is a comprehensive study of the principles and techniques of modern
digital systems. It is intended for use in two- and four-year programs in technology,
engineering, and computer science. Although a background in basic electronics is
helpful, the majority of the material requires no electronics training. Those portions
of the text that utilize electronic concepts can be skipped without adversely affect-
ing the comprehension of the logic principles.

General Improvements

This eighth edition contains several general improvements to the seventh edition.
All of the material has been checked for currency and updated wherever necessary.
Some of the material has been rewritten for greater clarity and completeness. Sev-
eral new examples, section review questions, and end-of-chapter problems have
been added, both to reinforce the new text material and to support the retained ma-
terial better. ,

PLD COVERAGE The most striking change in this eighth edition of Digital Sys-
tems: Principles and Applications is the new approach to teaching programmable
logic devices (PLDs). This book has been rewritten to teach the PLD as one of the
ways, along with traditional integrated circuits, to implement circuits from the sim-
plest gates to the most complicated digital systems. Whenever a major change in
technology occurs, there is a period during which educational institutions must de-
cide when and how to change the way they teach related topics. Some of us re-
member the transition from vacuum tubes to transistors, and most of us remember
the shift from transistor circuits to op-amps. Over the past 15 years, the technology
of digital systems has moved toward programmable logic. Very few new digital sys-
tems today use small-scale and medium-scale integrated circuits in anything other
than a minor role. Most modern digital circuitry is contained in a programmable de-
vice, gate array, or full custom integrated circuit. Still, in order to learn how to cre-
ate those “systems in a chip,” students must first understand the building blocks,
such as decoders, multiplexers, adders, buffers, latches, registers, counters, and so
on. In introductory lab-based courses, the wiring and testing of these building
blocks is still a vital part of the pedagogy. It solidifies concepts such as binary inputs
and outputs, physical device operation, and practical limitations. It also provides a
realistic forum for developing troubleshooting skills.

The wiring of these circuits on a conventional breadboard still provides a means
of learning that is not attainable through graphics, simulation, or text descriptions.
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However, programmable devices can be used to demonstrate these concepts just as
effectively as medium-scale integrated circuits. Because the means to implement
these circuits in current technology is with the PLD, the skills necessary to use PLDs
must be developed concurrently with the knowledge of basic building blocks. We
believe that PLDs can be used to implement logic circuits long before the student
has acquired enough knowledge to fully understand all of the inner workings of a
PLD. In so doing, students are given a chance to learn the development and pro-
gramming steps using relatively simple circuits. Later they can expand their knowl-
edge of advanced features of programming languages as they become aware of
more advanced circuits. Eventually, after learning all the building blocks, students
can understand the circuitry of a PLD in order to take full advantage of its capabili-
ties and realize its limitations.

SEQUENCING Our approach to PLDs in this edition gives instructors three op-
tions: (1) The PLD material can be skipped in its entirety without affecting the con-
tinuity of the text; (2) PLDs can be taught as a separate topic by skipping PLD ma-
terial initially and then going back to the last sections of Chapters 4, 5, 6, 7, and 9
before reading Chapter 12; or (3) PLDs can be introduced as the course unfolds—
chapter by chapter—and woven into the fabric of the lecture/lab experience. We
believe our approach will provide maximum flexibility for a variety of courses and
objectives.

It is a rare instructor who uses the chapters of a textbook in the sequence in
which they are presented. This book was written so that, for the most part, each
chapter builds on previous material, but it is possible to alter the chapter sequence
somewhat. The first part of Chapter 6 (arithmetic operations) can be covered right
after Chapter 2 (number systems), although this would produce a long interval be-
fore the arithmetic circuits of Chapter 6 are encountered. Much of the material in
Chapter 8 (IC characteristics) can be covered earlier (e.g., after Chapter 4 or 5) with-
out causing any serious problems.

This book can be used either in a one-term course or in a two-term sequence.
When used in one term, it may be necessary, depending on available class hours, to
omit some topics. Here is a list of sections and chapters that can be deleted with
minimal disruption. Obviously, the choice of deletions will depend on factors such
as program or course objectives and student background:

Chapter 1:  All Chapter 8:  Sections 11, 14-21
Chapter 2:  Section 6 Chapter 9:  Sections 5, 9, 15
Chapter 4: Sections 7, 10-14 Chapter 10: Sections 7, 14-18
Chapter 5:  Sections 3, 24-26 Chapter 11: Sections 17-21

Chapter 6:  Sections 5-7, 11, 13, 16-20 Chapter 12:  All
Chapter 7: Sections 10, 14, 23-25

PROBLEM SETS The seventh edition contained four categories of problems: chal-
lenging (C), troubleshooting (T), new (N), and design (D). The eighth edition adds
the category of basic (B) to designate problems that are very fundamental applica-
tions of the concepts in that particular chapter. Also, we have added more problems
that exercise a basic understanding. Undesignated problems are considered to be of
intermediate difficulty, between basic and challenging.



Preface & ix

DATA SHEETS Although a few data sheets are retained in Appendix B, the ac-
companying CD-ROM is now the primary source of manufacturers’ data sheets. The
information on this single CD is equivalent to an entire shelf full of data books cov-
ering all TTL, CMOS, and high-speed bus interface logic ICs. We feel this will pro-
vide students with a much more complete reference resource while retaining
enough printed data sheets to teach them how to read and interpret data sheet con-
tent in the absence of a computer with CD-ROM capability.

SIMULATION FILES This edition also includes simulation files that can be loaded
into Electronics Workbench and CircuitMaker. The circuit schematics of many of the
figures throughout the text have been captured as input files for these two popular
simulation tools. Each file has some way of demonstrating the operation of the cir-
cuit or reinforcing a concept. In many cases, instruments are attached to the circuit
and input sequences are applied to demonstrate the concept presented in one of
the figures of the text. These circuits can then be modified as desired to expand on
topics or create assignments and tutorials for students. All figures in the text that
have a corresponding simulation file on the CD-ROM are identified by this icon:

IC TECHNOLOGY This new edition continues the practice begun with the last two
editions of giving more prominence to CMOS as the principal IC technology in the
small- and medium-scale integration applications. This has been accomplished
while still retaining the substantial coverage of TTL logic.

REAL-WORLD APPLICATIONS The examples of real-world applications that
were distributed throughout previous editions have been retained to motivate those
students who ask, “Why do we need to know this?” Some examples are copy ma-
chine control circuits, liquid process control sequencer circuits, space shuttle bat-
tery-voltage monitor, digital thermostat, and a look-up table function generator. PLD
examples are chosen to offer an alternate way to implement equivalent SSI and MSI
circuitry that is explained earlier in the text. However, new PLD examples are in-
cluded that consolidate several types of circuits and several design methods in a sin-
gle PLD system. For example, the universal stepper motor driver depicted in Figure
P-1 uses a single GAL 16V8 to implement the sequencer, decoder, and tristate
buffered outputs for an interface circuit that is very useful when working with step-
per motors in the lab. Figure P-2 shows a scanned keypad encoder that is very use-
ful as an input device to microprocessors and other digital systems. It includes se-
quential ring counter circuits as well as encoders and tristate output control. These
are circuits that can easily be built and used in future experiments involving digi-
tal systems.



FIGURE P-2  Scanned keypad

encoder from Figure 12-25.
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Specific Changes

The major changes in the topical coverage are:

Chapter 1. A look at the “digital future” has been updated.

Chapter 2. This chapter now covers new and improved methods for using cal-
culators to perform conversions between number systems.

Chapter 3. IEEE standard symbol coverage has been reduced.

Chapter 4. (1) Material on K-mapping, including a complete example using
“don’t cares,” has been added. (2) PLDs are introduced as another way of imple-
menting logic circuits. The general concepts of PLD hardware are introduced in
the simplest possible way, showing basic sum-of-products circuits programmed
using fuse technology. This chapter describes the required computer hardware
and programming fixture along with the role each plays in the development
process. A specific high-level hardware description language is introduced and a
simple combinational logic circuit is implemented as an example of the entire
process.

Chapter 5. Logic circuits with feedback, including SR and D latches, are imple-
mented using PLDs. The state transition method of hardware description is used
to implement a simple counter circuit on a PLD.

Chapter 6. A section is added that demonstrates a 4-bit full adder implemented
on a PLD. The use of set notation in the hardware description language is intro-
duced along with indexed variables to combine 4-bit data sets logically.

Chapter 7. (1) Material on the 74178 (obsolete) has been deleted, and coverage
of the 74165 and 74174 ICs has been expanded. (2) The registered outputs of
PLDs are introduced along with two more methods of specifying the state se-
quence of a counter circuit (state machine).

Chapter 8. Several incremental revisions and changes in technology have mo-
tivated a substantial rearrangement of topics in Chapter 8. Ball grid array pack-
ages are introduced. All TTL examples and data sheets now feature the ALS se-
ries, while the fundamental circuit characteristics are described using the more
easily understood standard TTL. In addition, the topical coverage of MOS and
CMOS has been consolidated and the coverage of PMOS and NMOS reduced
to reflect current industrial use and emphasis on CMOS as the most popular
technology today. ECL material is updated. The continued expansion of low-
voltage technologies is updated. Open-collector and open-drain circuit descrip-
tions are consolidated to eliminate redundancy and tristate logic coverage is
improved. The high-speed bus interface series are also introduced, along with
a brief introduction to the nature of transmission lines and the need for bus
terminations.

Chapter 9. This chapter describes color LCD displays and technology used in
laptop computer screens. Gas discharge (vacuum fluorescent) displays and two
IEEE notation sections have been deleted. A section on PLDs covers the use of
the truth table method of hardware description. Conventional MSIC functions are
implemented using PLDs.

Chapter 10. The section on sampling has been expanded to address the issue of
minimum sample rate (Nyquist) and signal aliasing. The application of A/D and
D/A converters to the rapidly growing field of digital signal processing is ex-
panded with a basic and easy-to-understand introduction to DSP.
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8 Chapter 11. All PLD material has been edited or moved to other areas of the
text, mostly Chapter 12. Coverage of terms and concepts often referred to in PC
literature is expanded, including a snapshot of the transient state of DRAM tech-
nology, definition of latency and its effect on execution speed, as well as a de-
scription of L1 and L2 cache systems in modern PCs. Circular buffers are intro-
duced as a memory structure due to their prevalent use in DSP systems.

B Chapter 12. This chapter has been rewritten to begin with an overview of the
internal hardware of simple PLDs. The material from Chapter 11 of the seventh
edition has been revised and combined with material from Chapter 12. The
popular GAL 22V10 is also introduced with an example that requires its added
capability. Two complete and very practical digital systems—a universal stepper
motor driver and a scanned keypad encoder—are implemented using a single
PLD. Material has been added to offer a glimpse into the real world of ad-
vanced digital system design by describing other hardware definition languages
(HDL) and the general architecture of the more advanced field programmable
gate arrays.

B Appendix A. The material on microprocessors (Chapter 13 in past editions) has
admittedly been a superficial introduction to a very important and complex sub-
ject. We believe most programs cover this material in another course and use a
text dedicated to the subject. Consequently, we have relegated the material to
Appendix A with intentions of eventually phasing this material out of the book.
We invite feedback on these plans by way of the Prentice Hall Companion Web-
site for this book, http://www.prenhall.com/tocci.

Retained Features

This edition retains all of the features that made the previous editions so widely ac-
cepted. It utilizes a block diagram approach to teach the basic logic operations with-
out confusing the reader with the details of internal operation. All but the most ba-
sic electrical characteristics of the logic ICs are withheld until the reader has a firm
understanding of logic principles. In Chapter 8 the reader is introduced to the inter-
nal IC circuitry. At that point, the reader can interpret a logic block’s input and out-
put characteristics and “fit” it properly into a complete system.

The treatment of each new topic or device typically follows these steps: the
principle of operation is introduced; thoroughly explained examples and applica-
tions are presented, often using actual ICs; short review questions are posed at the
end of the section; and finally, in-depth problems are available at the end of the
chapter. Ranging from simple to complex, these problems provide instructors with a
wide choice of student assignments. These problems are often intended to reinforce
the material without simple repetition of the principles. They require the student to
demonstrate comprehension of the principles by applying them to different situa-
tions. This also helps the student develop confidence and expand his or her knowl-
edge of the material.

The IEEE/ANSI standard for logic symbols is introduced and discussed with
minimum disruption of the topic flow, and, if desired, can be omitted completely or
in part. The extensive troubleshooting coverage is spread over Chapters 4 through
11 and includes presentation of troubleshooting principles and techniques, case
studies, 25 troubleshooting examples, and 60 real troubleshooting problems. When
supplemented with hands-on lab exercises, this material can help foster the devel-
opment of good troubleshooting skills.
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The eighth edition offers over 200 worked-out examples, more than 400 review
questions, and over 450 chapter problems/exercises. Some of these problems are
applications that show how the logic devices presented in the chapter are used in a
typical microcomputer system.

An IC index is provided to help the reader easily locate material on any IC cited
or used in the text. The back endsheets contain tables of the most often used
Boolean algebra theorems, logic gate summaries, and flip-flop truth tables for quick
reference when doing problems or working in the lab.

A comprehensive glossary provides concise definitions of all terms in the text
that have been highlighted in boldface type.

Supplements

An extensive complement of teaching and learning tools has been developed to ac-
company this textbook. Each component of this package provides a unique func-
tion, and each can be used independently or in conjunction with the others.

Each text is packaged with two free CD-ROMs. The first CD-ROM contains:

B The entire library of Texas Instruments Logic Data Sheets, including all TTL
series, CMOS, and bus interface parts.

The second CD-ROM contains:

M Circuits from the text rendered in both Electronics Workbench™ and Cir-
cuitMaker® software programs. Students with access to Electronics Work-
bench software can open and work interactively with the Electronics Workbench
circuit files to increase their understanding of concepts and to prepare for labo-
ratory activities. This software can be obtained by contacting Electronics Work-
bench at www.electronicsworkbench.com. Free CircuitMaker Student Version
software is included on the CD-ROM, enabling students to access the Circuit-
Maker files.

M A limited-compile demonstration version of the PAL EXPERT CUPL lan-
guage compiler from Logical Devices, Inc. A fully licensed copy of this powerful
software is being offered at an educational discounted price to users of this text
by mentioning promotional offer #PreH5P1-2000 when ordering.

STUDENT RESOURCES

W StudyWizard Tutorial Software. Students can enhance their understanding of
each chapter by answering the review questions and testing their knowledge of
the terminology with this program. This program is available separately from the
text. Contact your local bookstore for more information.

N Lab Manual: A Design Approach, by Gregory Moss, contains topical units with
lab projects that emphasize simulation and design. It utilizes the CUPL software
in its programmable logic exercises. The new edition contains new projects and
examples, revised PLD coverage to match textbook revisions, and some new
screen captures. (ISBN 0-13-086588-5)

B Lab Manual: A Troubleshooting Approach, by Jim DeLoach and Frank Am-
brosio, offers over 40 experiments with an analysis and troubleshooting ap-
proach. (ISBN 0-13-089703-5)
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B Student Study Guide, by Frank Ambrosio, provides reinforcement of all of the
topics presented in the text. The new edition includes updated coverage to match
the new edition of the textbook and features entirely updated diagrams. (ISBN
0-13-085639-8)

B Companion Website (www.prenhall.com/tocci). This website offers students
a free, online study guide that they can check for conceptual understanding of
key topics.

B Electronics Supersite (www.prenhall.com/electronics). Students will find
additional troubleshooting exercises, links to industry sites, an interview with an
electronics professional, and more.

INSTRUCTOR RESOURCES

B Companion Website (www.prenhall.com/tocci). For the professor, this web-
site offers the ability to post your syllabus online with our Syllabus Builder. This
is a great solution for classes taught online, self-paced, or in any computer-
assisted manner.

B Electronics Supersite (www.prenhall.com/electronics). Instructors will find
the Prentice Hall Electronics Technology Journal, extra classroom resources, and
all of the supplements for this text available online for easy access. Contact your
local Prentice Hall sales representative for your “User Name” and “Passcode.”

B Online Course Support. If your program is offering your digital electronics
course in a distance learning format, please contact your local Prentice Hall sales
representative for a list of product solutions.

B Instructor’s Resource Manual presents worked-out, step-by-step solutions to
all text problems. (ISBN 0-13-085635-5)

B Lab Results Manual includes worked-out lab results for both Lab Manuals.
(ISBN 0-13-085637-1)

B PowerPoint CD-ROM contains slides featuring all figures from the text; 150 se-
lected slides contain explanatory text to elaborate on the presented graphic.
(ISBN 0-13-089704-3)

B Test Item File is a hard-copy set of hundreds of questions that can be used for
tests and quizzes. (ISBN 0-13-085636-3)

B PH Test Manager (Windows) is a computerized version of the Test Item File. In
CD-ROM format, this enables on-screen manipulation and editing of all test items
and includes graphics capabilities and a sophisticated function plotter. (ISBN
0-13-085641-X)
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DISCOVER THE COMPANION WEBSITE ACCOMPANYING THIS BOOK

The Prentice Hall Companion Website:
A Virtual Learning Environment

Technology is a constantly growing and changing aspect of our field that is creating
a need for content and resources. To address this emerging need, Prentice Hall has
developed an online learning environment for students and professors alike—Com-
panion Websites—to support our textbooks.

In creating a Companion Website, our goal is to build on and enhance what the
textbook already offers. For this reason, the content for each user-friendly website
is organized by chapter and provides the professor and student with a variety of
meaningful resources. Common features of a Companion Website include:

FOR THE PROFESSOR—Every Companion Website integrates Syllabus Manager™,
an online syllabus creation and management utility.

B Syllabus Manager™ provides you, the instructor, with an easy, step-by-step
process to create and revise syllabi, with direct links into Companion Website and
other online content without having to learn HTML.

B Students may logon to your syllabus during any study session. All they need to
know is the web address for the Companion Website and the password you've
assigned to your syllabus.

B After you have created a syllabus using Syllabus Manager™, students may enter
the syllabus for their course section from any point in the Companion Website.

B Clicking on a date, the student is shown the list of activities for the assignment.
The activities for each assignment are linked directly to actual content, saving
time for students.

B Adding assignments consists of clicking on the desired due date, then filling in
the details of the assignment—name of the assignment, instructions, and whether
or not it is a one-time or repeating assignment.

B In addition, links to other activities can be created easily. If the activity is online,
a URL can be entered in the space provided, and it will be linked automatically
in the final syllabus.

B Your completed syllabus is hosted on our servers, allowing convenient updates
from any computer on the Internet. Changes you make to your syllabus are im-

mediately available to your students at their next logon. .
Xvil



xviii

Companion Website

FOR THE STUDENT—

B Chapter Objectives—outline key concepts from the text

B Interactive self-quizzes—complete with hints and automatic grading that pro-
vide immediate feedback for students. Question formats include multiple choice,
true or false, fill in the blanks, and matching.

After students submit their answers for the interactive self-quizzes, the Companion
Website Results Reporter computes a percentage grade, provides a graphic repre-
sentation of how many questions were answered correctly and incorrectly, and
gives a question by question analysis of the quiz. Students are given the option to
send their quiz to up to four email addresses (professor, teaching assistant, study
partner, etc.).

B Message Board—serves as a virtual bulletin board to post—or respond to—
questions or comments to/from a national audience

B Chat—real time chat with anyone who is using the text anywhere in the coun-
try—ideal for discussion and study groups, class projects, etc.

To take advantage of these and other resources, please visit the Digital Systems:
Principles and Applications, Eighth Edition Companion Website at

www.prenhall.com/tocci
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B OBJECTIVES

Upon completion of this chapier, you will be able to:

W Distinguish between analog and digital representations.

| (Cite the advantages and drawbacks of digital techniques compared with analog.

® Understand the need for analog-to-digital converters (ADCs) and digital-to-
analog converters (DACS).

B Recognize the basic characteristics of the binary number system.

® Convert a binary number to its decimal equivalent.

® Count in the binary number system.

W Identify typical digital signals.

B Identify a timing diagram.

m State the differences between parallel and serial transmission.

B Describe the property of memory.

B Describe the major parts of a digital computer and understand their functions.

B Distinguish among microcomputers, microprocessors, and microcontrollers.

B INTRODUCTION

In today’s world, the term digital has become part of our everyday vocabulary be-
cause of the dramatic way that digital circuits and digital techniques have become
so widely used in almost all areas of life: computers, automation, robots, medical
science and technology, transportation, entertainment, space exploration, and on
and on. You are about to begin an exciting educational journey in which you will
discover the fundamental principles, concepts, and operations that are common to
all digital systems from the simplest on/off switch to the most complex computer. If
this book is successful, you should gain a deep understanding of how ail digital
systems work, and you should be able to apply this understanding to the analysis
and troubleshooting of any digital system.

We start by introducing some underlying concepts that are a vital part of
digital technology; these concepts will be expanded on as they are needed later in

3



the book. We also introduce some of the terminology that is necessary when em-
barking on a new field of study, and add to it in every chapter.

[ I S,

LI LI
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1-1 NUMERICAL REPRESENTATIONS

In science, technology, business, and, in fact, most other fields of endeavor, we are
constantly dealing with quantities. Quantities are measured, monitored, recorded,
manipulated arithmetically, observed, or in some other way utilized in most physi-
cal systems. It is important when dealing with various quantities that we be able to
represent their values efficiently and accurately. There are basically two ways of
representing the numerical value of quantities: analog and digital.

Analog Representations

In analog representation a quantity is represented by a voltage, current, or meter
movement that is proportional to the value of that quantity. An example is an auto-
mobile speedometer, in which the deflection of the needle is proportional to the
speed of the auto. The angular position of the needle represents the value of the
auto’s speed, and the needle follows any changes that occur as the auto speeds up
or slows down.

Another example is the common mercury thermometer, in which the height of
the column of mercury is proportional to the room temperature. As the temperature
goes up or down, the mercury goes up or down proportionally, so that the level of
the mercury represents the value of the temperature.

Still another example of an analog quantity is found in the familiar audio mi-
crophone. In this device an output voltage is generated in proportion to the ampli-
tude of the sound waves that impinge on the microphone. The variations in the out-
put voltage follow the same variations as the input sound.

Analog quantities such as those cited above have an important characteristic:
they can vary over a continuous range of values. The automobile speed can have
any value between zero and, say, 100 mph. Similarly, the microphone output might
have any value within a range of zero to 10 mV (e.g., 1 mV, 2.3724 mV, 9.9999 mV).

Digital Representations

In digital representation the quantities are represented not by proportional quan-
tities but by symbols called digits. As an example, consider the digital watch, which
provides the time of day in the form of decimal digits which represent hours and
minutes (and sometimes seconds). As we know, the time of day changes continu-
ously, but the digital watch reading does not change continuously; rather, it
changes in steps of one per minute (or per second). In other words, this digital
representation of the time of day changes in discrete steps, as compared with the
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representation of time provided by an analog watch, where the dial reading
changes continuously.

The major difference between analog and digital quantities, then, can be simply
stated as follows:

analog = continuous
digital = discrete (step by step)

Because of the discrete nature of digital representations, there is no ambiguity when
reading the value of a digital quantity, whereas the value of an analog quantity is of-
ten open to interpretation.

Which of the following involve analog quantities and which involve digital quanti-
ties?

(@) Ten-position switch

(b) Current flowing out of an electrical outlet
(¢) Temperature of a room

(d) Sand grains on the beach

(e) Automobile speedometer

Solution

(2) Digital
(b) Analog
(©) Analog

(d) Digital, since the number of grains can be only certain discrete (integer) values
and not every possible value over a continuous range

(e) Analog, if needle type; digital, if numerical readout type

Review Question* 1. Concisely describe the major difference between analog and digital quantities.

1-2 DIGITAL AND ANALOG SYSTEMS

A digital system is a combination of devices designed to manipulate logical in-
formation or physical quantities that are represented in digital form; that is, the
quantities can take on only discrete values. These devices are most often elec-
tronic, but they can also be mechanical, magnetic, or pneumatic. Some of the
more familiar digital systems include digital computers and calculators, digital au-
dio and video equipment, and the telephone system—the world’s largest digital
system.

* Answers to review questions are found at the end of the chapter in which they occur.
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An analog systern contains devices that manipulate physical quantities that are

represented in analog form. In an analog system, the quantities can vary over a con-
tinuous range of values. For example, the amplitude of the output signal to the
speaker in a radio receiver can have any value between zero and its maximum limit.
Other common analog systems are audio amplifiers, magnetic tape recording and
playback equipment, and a simple light dimmer switch.

Advantages of Digital Techniques

An increasing majority of applications in electronics, as well as in most other tech-
nologies, use digital techniques to perform operations that were once performed us-
ing analog methods. The chief reasons for the shift to digital technology are:

1.

Digital systems are generally easier to design. This is because the circuits that are
used are switching circuits, where exact values of voltage or current are not im-
portant, only the range (HIGH or LOW) in which they fall.

Information storage is easy. This is accomplished by special devices and circuits
that can latch onto digital information and hold it for as long as necessary, and
mass storage techniques that can store billions of bits of information in a rela-
tively small physical space. Analog storage capabilities are, by contrast, ex-
tremely limited.

. Accuracy and precision are greater. Digital systems can handle as many digits of

precision as you need simply by adding more switching circuits. In analog sys-
tems, precision is usually limited to three or four digits because the values of
voltage and current are directly dependent on the circuit component values and
are affected by random voltage fluctuations (noise).

Operation can be programmed. It is fairly easy to design digital systems whose op-
eration is controlled by a set of stored instructions called a program. Analog sys-
tems can also be programmed, but the variety and the complexity of the available
operations are severely limited.

. Digital circuits are less affected by noise. Spurious fluctuations in voltage (noise)

are not as critical in digital systems because the exact value of a voltage is not im-
portant, as long as the noise is not large enough to prevent us from distinguish-
ing a HIGH from a LOW.

. More digital circuitry can be fabricated on IC chips. It is true that analog circuitry

has also benefited from the tremendous development of IC technology, but its
relative complexity and its use of devices that cannot be economically integrated
(high-value capacitors, precision resistors, inductors, transformers) have pre-
vented analog systems from achieving the same high degree of integration.

Limitations of Digital Techniques
There is really only one major drawback when using digital techniques:

The real world is mainly analog.

Most physical quantities are analog in nature, and it is these quantities that are often
the inputs and outputs that are being monitored, operated on, and controlled by a
system. Some examples are temperature, pressure, position, velocity, liquid level,
flow rate, and so on. We are in the habit of expressing these quantities digitally, such
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as when we say that the temperature is 64° (63.8° when we want to be more precise);
but we are really making a digital approximation to an inherently analog quantity.

To take advantage of digital techniques when dealing with analog inputs and
outputs, three steps must be followed:

1. Convert the real-world analog inputs to digital form.
2. Process (operate on) the digital information.

3. Convert the digital outputs back to real-world analog form.

Figure 1-1 shows a block diagram of this for a typical temperature control sys-
tem. As the diagram shows, the analog temperature is measured and the measured
value is then converted to a digital quantity by an analog-to-digital converter
(ADC). The digital quantity is then processed by the digital circuitry, which may or
may not include a digital computer. Its digital output is converted back to an analog
quantity by a digital-to-analog converter (DAC). This analog output is fed to a
controller which takes some kind of action to adjust the temperature.

(Analog) To- I (Digital) T
Temperature Measuring = Ar;’oi?alm Y Digital
Vinalog) cavice 3 c-onsener " | processing
- (Digital)
Digital-to- (Analog) _
> analog P Controller > AdlUStts
converter emperature

FIGURE 1-1 Block diagram of a temperature control system that requires analog/digital
conversions in order to allow the use of digital processing techniques.

Another good example where conversion between analog and digital takes
place is in the recording of audio. Compact disks (CDs) have taken the recording in-
dustry by storm because they provide a much better means for recording and play-
ing back music. The process works something like this: (1) sounds from instruments
and human voices produce an analog voltage signal in a microphone; (2) this ana-
log signal is converted to a digital format using an analog-to-digital conversion
process; (3) the digital information is stored on the CD’s surface; (4) during play-
back, the CD player takes the digital information from the CD surface and converts
it into an analog signal which is then amplified and fed to a speaker where it can be
picked up by the human ear.

The need for conversion between analog and digital forms of information can
be considered a drawback because of the added complexity and expense. Another
factor that is often important is the extra time required to perform these conver-
sions. In many applications, these factors are outweighed by the numerous advan-
tages of using digital techniques, and so the conversion between analog and digital
quantities has become quite commonplace in the current technology.

There are situations, however, where use of analog techniques is simpler or
more economical. For example, the process of generating and distributing electrical
power to homes and businesses is primarily done using analog circuitry.



8 @%‘@ Chapter 1 / Introductory Concepts

It is common to see both digital and analog techniques employed within the
same system in order to profit from the advantages of each. In these hybrid systems,
one of the most important parts of the design phase involves determining what
parts of the system are to be analog and what parts are to be digital.

The Future Is Digital

The advances in digital technology over the past three decades have been nothing
short of phenomenal, and there is every reason to believe that more is coming. The
growth rate in the digital realm continues to be staggering, and it’s likely that by the
time you read this, some of the “future developments” will have already become
commonplace. Maybe your automobile is equipped with an Auto PC that turns
your dashboard into a hub for wireless communication, information, and naviga-
tion. You may already be using voice commands to send or retrieve e-mail, call for
a traffic report, check on the car’s maintenance needs, send a fax, order takeout, or
just switch radio stations or CDs—all without taking your hands off the wheel or
your eyes off the road. Or maybe you're a parent with a child who has chronic
medical problems, and she now has sensor-laden microprocessors embedded in
her arms to keep tabs on her pulse, blood pressure, temperature, immune-system
activity, and other biological data no matter where she is. This data can be moni-
tored and read by doctors or nurses with a radio scanner from outside the body,
like Star Trek’s Dr. McCoy, so that treatment can be administered when necessary
with minimum delay.

If these products of the digital age have not materialized yet, don’t worry, they’re
coming . . . along with much more of the same. Early in the twenty-first century,
your right and left cuff links or earrings may communicate with each other by low-
orbiting satellites and have more computer power than your present home or office
computer. Telephones will be able to receive, sort, and maybe respond to incoming
calls like a well-trained secretary. Children in school will be able to gather ideas and
information and socialize with other children all over the world. When you watch
television for an hour, what you see will have been delivered to your home in less
than a second and stored in your TV’s (computer’s) memory for viewing at your con-
venience. Reading about a place 5,000 miles away may include the sensory experi-
ence of being there. And that’s only the tip of the iceberg.

In other words, digital technology will continue its high-speed incursion into
current areas of our lives as well as break new ground in ways we may not even
have thought about. All we can do is try to learn as much as we can about this tech-
nology and hang on and enjoy the ride.

1. What are the advantages of digital techniques over analog?
2. What is the chief limitation to the use of digital techniques?

1-3 DIGITAL NUMBER SYSTEMS

Many number systems are in use in digital technology. The most common are the
decimal, binary, octal, and hexadecimal systems. The decimal system is clearly the
most familiar to us because it is a tool that we use every day. Examining some of its
characteristics will help us to understand the other systems better.
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Decimal System

The decimal system is composed of 70 numerals or symbols. These 10 symbols
are 0,1, 2,3, 4,5,6,7,8,9; using these symbols as digits of a number, we can ex-
press any quantity. The decimal system, also called the base-10 system because it
has 10 digits, has evolved naturally as a result of the fact that people have 10 fingers.
In fact, the word “digit” is derived from the Latin word for “finger.”

The decimal system is a positional-value system in which the value of a digit de-
pends on its position. For example, consider the decimal number 453. We know that
the digit 4 actually represents 4 hundreds, the 5 represents 5 fens, and the 3 repre-
sents 3 units. In essence, the 4 carries the most weight of the three digits; it is re-
ferred to as the most significant digit (MSD). The 3 carries the least weight and is
called the least significant digit (LSD).

Consider another example, 27.35. This number is actually equal to 2 tens plus
7 units plus 3 tenths plus 5 hundredths, or 2 X 10 + 7 X 1 + 3 X 0.1 + 5 X
0.01. The decimal point is used to separate the integer and fractional parts of the
number.

More rigorously, the various positions relative to the decimal point carry
weights that can be expressed as powers of 10. This is illustrated in Figure 1-2,
where the number 2745.214 is represented. The decimal point separates the
positive powers of 10 from the negative powers. The number 2745.214 is thus

equal to

QX104+ 7 X100+ ¢ x10) + 6 x 109
+Q2X10H+AX10H+E X107

In general, any number is simply the sum of the products of each digit value and its
positional value.

FIGURE 1-2 Decimal position Positional values
values as powers of 10. (weights)

‘—»10310210‘100 EB
Yy

-— 1072

—> | » | <108
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} }

MSD Decimal LSD
point

Decimal Counting

When counting in the decimal system, we start with 0 in the units position and take
each symbol (digit) in progression until we reach 9. Then we add a 1 to the next
higher position and start over with 0 in the first position (see Figure 1-3). This
process continues until the count of 99 is reached. Then we add a 1 to the third po-
sition and start over with Os in the first two positions. The same pattern is followed
continuously as high as we wish to count.
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FIGURE 1-3 Decimal counting. 0 20 103
1 21 |
2 22 I
3 23 !
4 24 |
5 25 !
6 26 |
7 27 !
8 28 l
9 29 !

10 30 |
11 I !
12 " 199
13 Il 200
14 " :
15 I |
16 99 !
17 100 i
18 101 999
19 102 1000

It is important to note that in decimal counting the units position (LSD) changes
upward with each step in the count, the tens position changes upward every 10
steps in the count, the hundreds position changes upward every 100 steps in the
count, and so on.

Another characteristic of the decimal system is that using only two decimal
places, we can count through 10> = 100 different numbers (0 to 99).* With three
places we can count through 1000 numbers (0 to 999); and so on. In general, with
Nplaces or digits we can count through 10" different numbers, starting with and in-
cluding zero. The largest number will always be 10" — 1.

Binary System

Unfortunately, the decimal number system does not lend itself to convenient imple-
mentation in digital systems. For example, it is very difficult to design electronic
equipment so that it can work with 10 different voltage levels (each one represent-
ing one decimal character, 0 through 9). On the other hand, it is very easy to design
simple, accurate electronic circuits that operate with only two voltage levels. For this
reason, almost every digital system uses the binary (base-2) number system as the
basic number system of its operations, although other systems are often used in
conjunction with binary.

In the binary system there are only two symbols or possible digit values, 0 and
1. Even so0, this base-2 system can be used to represent any quantity that can be rep-
resented in decimal or other number systems. In general though, it will take a
greater number of binary digits to express a given quantity.

All of the statements made earlier concerning the decimal system are equally
applicable to the binary system. The binary system is also a positional-value system,
wherein each binary digit has its own value or weight expressed as a power of 2.
This is illustrated in Figure 1-4. Here, places to the left of the binary point (counter-
part of the decimal point) are positive powers of 2, and places to the right are neg-
ative powers of 2. The number 1011.101 is shown represented in the figure. To find

*  Zero is counted as a number.
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FIGURE 1-4 Binary position  Positional
values as powers of 2. values
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point

its equivalent in the decimal system we simply take the sum of the products of each
digit value (0 or 1) and its positional value:

1011101, = A1 X 2H + (0 x2H+ (A x2H + 1 x 29
+AX2H+OX2H+A X2
=8+0+2+1+05+0+0.125
11.625,,

Notice in the preceding operation that subscripts (2 and 10) were used to indicate
the base in which the particular number is expressed. This convention is used to
avoid confusion whenever more than one number system is being employed.

In the binary system, the term binary digit is often abbreviated to the term bit,
which we will use from now on. Thus, in the number expressed in Figure 1-4 there
are four bits to the left of the binary point, representing the integer part of the num-
ber, and three bits to the right of the binary point, representing the fractional part.
The most significant bit (MSB) is the leftmost bit (largest weight). The least signifi-
cant bit (LSB) is the rightmost bit (smallest weight). These are indicated in Figure
1-4. Here the MSB has a weight of 2°; the LSB has a weight of 27°.

Binary Counting

When we deal with binary numbers, we will usually be restricted to a specific num-
ber of bits. This restriction is based on the circuitry that is used to represent these
binary numbers. Let’s use four-bit binary numbers to illustrate the method for count-
ing in binary.

The sequence (shown in Figure 1-5) begins with all bits at 0; this is called the
zero count. For each successive count, the units (2°) position toggles; that is, it
changes from one binary value to the other. Each time the units bit changes from a
1 to a 0, the twos (2") position will toggle (change states). Each time the twos posi-
tion changes from 1 to 0, the fours (2°) position will toggle (change states). Like-
wise, each time the fours position goes from 1 to 0, the eights (2%) position toggles.
This same process would be continued for the higher-order bit positions if the bi-
nary number had more than four bits.

The binary counting sequence has an important characteristic, as shown in Fig-
ure 1-5. The units bit (LSB) changes either from 0 to 1 or 1 to 0 with each count. The
second bit (twos position) stays at 0 for two counts, then at 1 for two counts, then
at 0 for two counts, and so on. The third bit (fours position) stays at 0 for four
counts, then at 1 for four counts, and so on. The fourth bit (eights position) stays at
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FIGURE 1-5 Binary counting Weights — 23 =822 =4[ 21=2] 201 Decimal equivalent

sequence. 0 0 0 0 - 0
0 0 0 1 —— 1
0 0 1 0 | 2
0 0 1 1 ! 3
0 1 0 0 ! 4
0 1 0 1 I 5
0 1 1 0 | 6
0 1 1 1 ! 7
1 0 0 0 i 8
1 0 0 1 | 9
1 0 1 0 ! 10
1 0 1 1 i 1
1 1 0 0 | 12
1 1 0 1 ! 13
1 1 1 0o — 14
1 1 1 1T — 16

A
LSB

0 for eight counts, then at 1 for eight counts. If we wanted to count further, we
would add more places, and this pattern would continue with Os and 1s alternating
in groups of 2!, For example, using a fifth binary place, the fifth bit would alter-
nate sixteen Os, then sixteen 1s, and so on.

As we saw for the decimal system, it is also true for the binary system that by
using Nbits or places, we can go through 2" counts. For example, with two bits we
can go through 2% = 4 counts (00, through 11,); with four bits we can go through
2* = 16 counts (0000, through 1111,); and so on. The last count will always be all
1s and is equal to 2% — 1 in the decimal system. For example, using four bits, the
last count is 1111, = 2% — 1 = 15,,,.

What is the largest number that can be represented using eight bits?

Solution
2V —1=2%~-1=255,=11111111,.

This has been a brief introduction of the binary number system and its relation
to the decimal system. We will spend much more time on these two systems and
several others in the next chapter.

Review Questions 1. What is the decimal equivalent of 1101011,?

2. What is the next binary number following 10111, in the counting sequence?
3. What is the largest decimal value that can be represented using 12 bits?
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1-4 REPRESENTING BINARY QUANTITIES

In digital systems the information that is being processed is usually present in binary
form. Binary quantities can be represented by any device that has only two operat-
ing states or possible conditions. For example, a switch has only two states: open or
closed. We can arbitrarily let an open switch represent binary 0 and a closed switch
represent binary 1. With this assignment we can now represent any binary number
as illustrated in Figure 1-6(a), where the states of the various switches represent
10010,.

Another example is shown in Figure 1-6(b), where holes punched in paper are
used to represent binary numbers. A punched hole is a binary 1, and absence of a
hole is a binary 0.

FIGURE 1-6 (a) Open and Hole  No hole
closed switches representing 0

and 1, respectively; (b) absence 01100

or presence of holes in paper I I I 10010

tape representing 0 and 1,

respectively. 1/ f 1/ 0110
10 0 1 0

(@) {b)

There are numerous other devices that have only two operating states or can be
operated in two extreme conditions. Among these are: light bulb (bright or dark),
diode (conducting or nonconducting), relay (energized or deenergized), transistor
(cut off or saturated), photocell (illuminated or dark), thermostat (open or closed),
mechanical clutch (engaged or disengaged), and spot on a magnetic disk (magne-
tized or demagnetized).

In electronic digital systems, binary information is represented by voltages (or
currents) that are present at the inputs and outputs of.the various circuits. Typically,
the binary 0 and 1 are represented by two nominal voltage levels. For example, zero
volts (0 V) might represent binary 0, and +5 V might represent binary 1. In actual-
ity, because of circuit variations, the 0 and 1 would be represented by voltage
ranges. This is illustrated in Figure 1-7(a), where any voltage between 0 and 0.8 V
represents a 0 and any voltage between 2 and 5 V represents a 1. All input and out-
put signals will normally fall within one of these ranges except during transitions
from one level to another.

We can now see another significant difference between digital and analog sys-
tems. In digital systems, the exact value of a voltage is not important; for example,
for the voltage assignments of Figure 1-7(a), a voltage of 3.6 V means the same as
a voltage of 4.3 V. In analog systems, the exact value of a voltage s important. For
instance, if the analog voltage is proportional to the temperature measured by a
transducer, the 3.6 V would represent a different temperature than would 4.3 V. In
other words, the voltage value carries significant information. This characteristic
means that the design of accurate analog circuitry is generally more difficult than
that of digital circuitry because of the way in which exact voltage values are af-
fected by variations in component values, temperature, and noise (random voltage
fluctuations).
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FIGURE 1-7 (a) Typical voltage assignments in digital system; (b) typical digital signal
timing diagram.

Digital Signals and Timing Diagrams

Figure 1-7(b) shows a typical digital signal and how it varies over time. It is actually
a graph of voltage versus time (2) and is called a timing diagram. The horizontal
time scale is marked off at regular intervals beginning at %, and proceeding to #, b,
and so on. For the example timing diagram shown here, the signal starts at 0 V (a
binary 0) at time f, and remains there until time #. At 7, the signal makes a rapid
transition (jump) up to 4 V (a binary 1). At &, it jumps back down to 0 V. Similar
transitions occur at  and %. Note that the signal does not change at #; but stays at
4V from t; to .

The transitions on this timing diagram are drawn as vertical lines, and so they
appear to be instantaneous, when in reality they are not. In many situations, how-
ever, the transition times are so short compared to the times between transitions that
we can show them on the diagram as vertical lines. We will encounter situations
later where it will be necessary to show the transitions more accurately on an ex-
panded time scale.

Timing diagrams are used extensively to show how digital signals change with
time, and especially to show the relationship between two or more digital signals in
the same circuit or system. By displaying one or more digital signals on an oscillo-
scope or logic analyzer, we can compare the signals to their expected timing dia-
grams. This is a very important part of the testing and troubleshooting procedures
used in digital systems.

1-3 DIGITAL CIRCUITS/LOGIC CIRCUITS

Digital circuits are designed to produce output voltages that fall within the pre-
scribed 0 and 1 voltage ranges such as those defined in Figure 1-7. Likewise, digital
circuits are designed to respond predictably to input voltages that are with-
in the defined 0 and 1 ranges. What this means is that a digital circuit will respond
in the same way to all input voltages that fall within the allowed 0 range; simi-
larly, it will not distinguish between input voltages that lie within the allowed 1
range.
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FIGURE 1-8 A digital circuit c i
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To illustrate, Figure 1-8 represents a typical digital circuit with input v; and out-
put v,. The output is shown for two different input signal waveforms. Note that v,
is the same for both cases because the two input waveforms, while differing in their
exact voltage levels, are at the same binary levels.

Logic Circuits

The manner in which a digital circuit responds to an input is referred to as the cir-
cuit’s logic. Each type of digital circuit obeys a certain set of logic rules. For this rea-
son, digital circuits are also called logic circuits. We will use both terms inter-
changeably throughout the text. In Chapter 3 we will see more clearly what is meant
by a circuit’s “logic.”

We will be studying all the types of logic circuits that are currently used in
digital systems. Initially, our attention will be focused only on the logical opera-
tion that these circuits perform—that is, the relationship between the circuit in-
puts and outputs. We will defer any discussion of the internal circuit operation of
these logic circuits until after we have developed an understanding of their logical
operation.

Digital Integrated Circuits

Almost all of the digital circuits used in modern digital systems are integrated circuits
(ICs). The wide variety of available logic ICs has made it possible to construct com-
plex digital systems that are smaller and more reliable than their discrete-component
counterparts.

Several integrated-circuit fabrication technologies are used to produce digital
ICs, the most common being TTL, CMOS, NMOS, and ECL. Each differs in the type
of circuitry used to provide the desired logic operation. For example, TTL (transistor-
transistor logic) uses the bipolar transistor as its main circuit element, while
CMOS (complementary metal-oxide-semiconductor) uses the enhancement-mode
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MOSFET as its principal circuit element. We will learn about the various IC tech-
nologies, their characteristics, and their relative advantages and disadvantages after
we master the basic logic circuit types.

True or false: The exact value of an input voltage is critical for a digital circuit.

2. Can a digital circuit produce the same output voltage for different input volt-
age values?

3. A digital circuit is also referredtoasa ———_________ circuit.
4. A graph that shows how one or more digital signals change with time is called

1-6 PARALLEL AND SERIAL TRANSMISSION

One of the most common operations that occur in any digital system is the trans-
mission of information from one place to another. The information can be transmit-
ted over a distance as small as a fraction of an inch on the same circuit board, or
over a distance of many miles when an operator at a computer terminal is
communicating with a computer in another city. The information that is transmitted
is in binary form and is generally represented as voltages at the outputs of a send-
ing circuit that are connected to the inputs of a receiving circuit. Figure 1-9 illustrates
the two basic methods for digital information transmission: parallel and serial.

Figure 1-9(a) shows how the binary number 10100110 is transmitted from the
computer to a printer using parallel transmission. Fach bit of the binary number is
represented by one of the computer outputs and is connected to a corresponding
input of the printer, so that all eight bits are transmitted simultaneously (in parallel).

Figure 1-9(h) shows that there is only one connection between the computer
and printer when serial transmission is used. Here the computer output will pro-
duce a digital signal whose voltage level will change at regular intervals in accor-
dance with the binary number being transmitted; that is, one bit is transmitted per
time interval (serially) to the printer input. The accompanying timing diagram shows
how the signal level varies with time. Note that the LSB is transmitted first; this is
typical for serial transmission.

The principal trade-off between parallel and serial representations is one of
speed versus circuit simplicity. The transmission of binary data from one part of a
digital system to another can be done more quickly using parallel representation be-
cause all the bits are transmitted simultaneously, while serial representation trans-
mits one bit at a time. On the other hand, parallel requires more signal lines con-
nected between the sender and the receiver of the binary data than does serial. In
other words, parallel is faster, and serial requires fewer signal lines. This comparison
between parallel and serial methods for representing binary information will be en-
countered many times in discussions throughout the text.

1. Describe the relative advantages of parallel and serial transmission of binary
data.
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1-7 MEMORY

When an input signal is applied to most devices or circuits, the output somehow
changes in response to the input, and when the input signal is removed, the output
returns to its original state. These circuits do not exhibit the property of memory,
since their outputs revert back to normal. In digital circuitry certain types of devices
and circuits do have memory. When an input is applied to such a circuit, the output
will change its state, but it will remain in the new state even after the input is re-
moved. This property of retaining its response to a momentary input is called mem-
ory. Figure 1-10 illustrates nonmemory and memory operations.

Memory devices and circuits play an important role in digital systems because
they provide a means for storing binary numbers either temporarily or permanently,
with the ability to change the stored information at any time. As we shall see, the
various memory elements include magnetic and optical types and those which uti-
lize electronic latching circuits (called latches and flip-flops).
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1-8 DIGITAL COMPUTERS

Digital techniques have found their way into innumerable areas of technology, but
the area of automatic digital computers is by far the most notable and most ex-
tensive. Although digital computers affect some part of all of our lives, it is doubtful
that many of us know exactly what a computer does. In simplest terms, a computer
is a system of bardware that performs aritbmetic operations, manipulates data (usu-
ally in binary form), and makes decisions.

For the most part, human beings can do whatever computers can do, but comput-
ers can do it with much greater speed and accuracy. This is in spite of the fact that com-
puters perform all their calculations and operations one step at a time. For example, a
human being can take a list of 10 numbers and find their sum all in one operation by
listing the numbers one over the other and adding them column by column. A com-
puter, on the other hand, can add numbers only two at a time, so that adding this same
list of numbers will take nine actual addition steps. Of course, the fact that the computer
requires only a few nanoseconds per step makes up for this apparent inefficiency.

A computer is faster and more accurate than people are, but unlike most of us, it
must be given a complete set of instructions that tell it exactly what to do at each step
of its operation. This set of instructions, called a program, is prepared by one or
more persons for each job the computer is to do. Programs are placed in the com-
puter’s memory unit in binary-coded form, with each instruction having a unique
code. The computer takes these instruction codes from memory one at a time and
performs the operation called for by the code.

Major Parts of a Computer

There are several types of computer systems, but each can be broken down into the
same functional units. Each unit performs specific functions, and all units function
together to carry out the instructions given in the program. Figure 1-11 shows the
five major functional parts of a digital computer and their interaction. The solid lines
with arrows represent the flow of data and information. The dashed lines with ar-
rows represent the flow of timing and control signals.

The major functions of each unit are:

1. Input unit. Through this unit a complete set of instructions and data is fed into
the computer system and into the memory unit, to be stored until needed. The
information typically enters the input unit from a keyboard or a disk.

2. Memory unit. The memory stores the instructions and data received from the
input unit. It stores the results of arithmetic operations received from the arith-
metic unit. It also supplies information to the output unit.
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FIGURE 1-11 Functional diagram of a digital computer.

3. Control unit. This unit takes instructions from the memory unit one at a time
and interprets them. It then sends appropriate signals to all the other units to
cause the specific instruction to be executed.

4. Arithmetic/logic unit. All arithmetic calculations and logical decisions are per-
formed in this unit, which can then send results to the memory unit to be stored.

5. Output unit. This unit takes data from the memory unit and prints out, displays,
or otherwise presents the information to the operator (or process, in the case of
a process control computer).

Central Processing Unit (CPU)

As the diagram in Figure 1-11 shows, the control and arithmetic/logic units are of-
ten considered as one unit called the central processing unit (CPU). The CPU
contains all of the circuitry for fetching and interpreting instructions and for con-
trolling and performing the various operations called for by the instructions.

TYPES OF COMPUTERS All computers are made up of the basic units described
above, but they can differ as to physical size, operating speed, memory capacity,
and computational power, as well as other characteristics. Computers are often clas-
sified according to physical size which often, although not always, is an indication
of their relative capabilities. The three basic classifications, from smallest to largest,
are: microcomputer, minicomputer (workstation), and mainframe. As microcom-
puters have become more and more powerful, the distinction between microcom-
puters and minicomputers has become rather blurred, and we have begun to distin-
guish only between small computers—those that can fit in an office or on a desktop
or a lap—and large computers—those that are too big for any of those places. In
this book we will be concerned mainly with microcomputers.

A microcomputer is the smallest type of computer. It generally consists of sev-
eral IC chips, including a microprocessor chip, memory chips, and input/output
interface chips along with input/output devices such as a keyboard, video display,
printer, and disk drives. Microcomputers were developed as a result of tremendous
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advances in IC fabrication technology that made it possible to pack more and more
digital circuits onto a small chip. For example, the microprocessor chip contains—at
a minimum—all of the circuits that make up the CPU portion of the computer, that
is, the control unit and the arithmetic/logic unit. The microprocessor, in other
words, is a “CPU on a chip.”

Most of us are familiar with general-purpose microcomputers such as the IBM
PC and its clones and the Apple Macintosh, which are used in more than half of our
homes and in almost all of our businesses. These microcomputers can perform a
wide variety of tasks in a wide range of applications depending on the software
(programs) they are running. There is a more specialized type of microcomputer
called a microcontroller which is not a general-purpose computer. Rather, it is de-
signed to be used as a dedicated or embedded controller which helps monitor and
control the operation of a machine, a piece of equipment, or a process. Microcon-
trollers are microcomputers because they use a microprocessor chip as the CPU, but
they are much smaller than general-purpose microcomputers because the
input/output devices they normally use are much smaller. In fact, some of the
input/output devices—as well as memory—are usually right on the same chip as the
microprocessor. These single-chip microcontrollers are employed in a wide variety
of control applications such as: appliance control, metal-working machines, VCRs,
automated teller machines, photocopiers, automobile ignition systems, antilock
brakes, medical instrumentation, and much more.

So you see, even people who don’t own a PC or use one at work or school are
using microcomputers every day because so many modern consumer electronic de-
vices, appliances, office equipment, and much more are built around embedded mi-
crocontrollers. If you work, play, or go to school in this digital age, there’s no es-
caping it: you’ll use a microcomputer somewhere.

1. Explain how a digital circuit that has memory differs from one that does not.
2. Name the five major functional units of a computer.

3. Which two units make up the CPU?
4. An IC chip that contains a CPU iscalleda ——_________ .

[ S I
[ S S ) S

SUMMARY

1. The two basic ways of representing the numerical value of physical quantities
are analog (continuous) and digital (discrete).

2. Most quantities in the real world are analog, but digital techniques are generally
superior to analog techniques, and most of the predicted advances will be in the
digital realm.

3. The binary number system (0 and 1) is the basic system used in digital technology.
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. Digital or logic circuits operate on voltages that fall in prescribed ranges that rep-

resent either a binary 0 or a binary 1.

. The two basic ways to transfer digital information are parallel—all bits simulta-

neously—and serial—one bit at a time.

. The main parts of all computers are the input, control, memory, arithmetic/logic,

and output units.

. The combination of the arithmetic/logic unit and the control unit makes up the

CPU (central processing unit).

. A microcomputer usually has a CPU that is on a single chip called a micro-

processor.

. A microcontroller is a microcomputer especially designed for dedicated (not gen-

eral-purpose) control applications.

IMPORTANT TERMS*

PROBLEMS

analog representation bit memory unit
digital representation timing diagram control unit
digital system digital/logic circuits arithmetic/logic unit
analog system parallel output unit
analog-to-digital converter serial central processing unit
(ADC) memory (CPD)
digital-to-analog converter digital computer microcomputer
(DAO) program microprocessor
decimal system input unit microcontroller

binary system

SECTION 1-2
1-1. Which of the following are analog quantities, and which are digital?

(&) Number of atoms in a sample of material
(b) Altitude of an aircraft

(¢) Pressure in a bicycle tire

(d) Current through a speaker

(e) Timer setting on a microwave oven

SECTION 1-3
1-2. Convert the following binary numbers to their equivalent decimal values.

@ 11001,
®) 1001.1001,
(©) 10011011001.10110,

1-3. Using six bits, show the binary counting sequence from 000000 to 111111.
1-4. What is the maximum number that we can count up to using 10 bits?
1-5. How many bits are needed to count up to a maximum of 511?

*

These terms can be found in boldface type in the chapter and are defined in the Glossary at the end
of the book.
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1-6. Draw the timing diagram for a digital signal that continuously alternates be-
tween 0.2 V (binary 0) for 2 ms and 4.4 V (binary 1) for 4 ms.

SECTION 1-6

1-7. Suppose that the decimal integer values from 0 to 15 are to be transmitted in bi-

nary.

(a) How many lines will be needed if parallel representation is used?
(b) How many will be needed if serial representation is used?

SECTIONS 1-7 AND 1-8

1-8. How is a microprocessor different from a microcomputer?
1-9. How is a microcontroller different from a microcomputer?

ANSWERS TO SECTION REVIEW QUESTIONS

SECTION 1-1

1. Analog quantities can take on any value over a
continuous range; digital quantities can take on only
discrete values.

SECTION 1-2

1. Easier to design; easier to store information; greater
accuracy and precision; programmability; less affected
by noise; higher degree of integration 2. Real-world
physical quantities are analog.

SECTION 1-3

1. 107,0 2. 11000, 3. 4095,

SECTION 1-5

1. False 2. Yes, provided that the two input voltages
are within the same logic level range 3. Logic

4. Timing diagram

SECTION 1-6

1. Parallel is faster; serial requires only one signal line.

SECTION 1-8

1. One that has memory will have its output changed
and remain changed in response to a momentary
change in the input signal. 2. Input, output,
memory, arithmetic/logic, control 3. Control and
arithmetic/logic 4. Microprocessor
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B OBJECTIVES

Upon completion of this chapter, you will be able to:

® Convert a number from one number system (decimal, binary, octal, hexadeci-
mal) to its equivalent in one of the other number systems.

| Cite the advantages of the octal and hexdecimal number systems.
® Count in octal and hexadecimal.

® Represent decimal numbers using the BCD code; cite the pros and cons of using
BCD.

® Understand the difference between BCD and straight binary.

® Understand the purpose of alphanumeric codes such as the ASCII code.
® Explain the parity method for error detection.

m Determine the parity bit to be attached to a digital data string.

B INTRODUCTION

The binary number system is the most important one in digital systems, but sev-
eral others are also important. The decimal system is important because it is uni-
versally used to represent quantities outside a digital system. This means that
there will be situations where decimal values must be converted to binary values
before they are entered into the digital system. For example, when you punch a
decimal number into your hand calculator (or computer), the circuitry inside the
machine converts the decimal number to a binary value.

Likewise, there will be situations where the binary values at the outputs of a
digital system must be converted to decimal values for presentation to the outside
world. For example, your calculator (or computer) uses binary numbers to calcu-
late answers to a problem and then converts the answers to a decimal value before
displaying them.

In addition to binary and decimal, two other number systems find widespread
applications in digital systems. The octal (base-8) and hexadecimal (base-16)
number systems are both used for the same purpose—to provide an efficient
means for representing large binary numbers. As we shall see, both of these
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number systems have the advantage that they can be easily converted to and from
binary.

In a digital system, three or four of these number systems may be in use at the
same time, so that an understanding of the system operation requires the ability to
convert from one number system to another. This chapter will show you how to
perform these conversions. Although some of them will not be of immediate use in
our study of digital systems, you will need them when you begin to study micro-
Processors.

This chapter will also introduce some of the binary codes that are used to rep-
resent various Kinds of information. These binary codes will use 1s and 0s, but in a
way that differs somewhat from that of the binary number system.

[ S e S,
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R

2-1 BINARY-TO-DECIMAL CONVERSIONS

"jgmgg_-_ Ouestions
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As explained in Chapter 1, the binary number system is a positional system where
each binary digit (bit) carries a certain weight based on its position relative to the
LSB. Any binary number can be converted to its decimal equivalent simply by sum-
ming together the weights of the various positions in the binary number which con-
tain a 1. To illustrate, let’s change 11011, to its decimal equivalent.

1 1 0 1 1,
22+ 28 +0+2'4+2°=16+8+2+1
=2710

Let’s try another example with a greater number of bits:

1 0 1 1 0 1 0 1,=
27 +0+2°+2%+0+224+40+2°

181,

Note that the procedure is to find the weights (i.e., powers of 2) for each bit posi-
tion that contains a 1, and then to add them up. Also note that the MSB has a weight
of 27 even though it is the eighth bit; this is because the LSB is the first bit and has
a weight of 2°.

1. Convert 100011011011, to its decimal equivalent.
2. What is the weight of the MSB of a 16-bit number?
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2=2 DECIMAL-TO-BINARY CONVERSIONS

There are two ways to convert a decimal whole number to its equivalent binary-
system representation. The first method is the reverse of the process described in
Section 2-1. The decimal number is simply expressed as a sum of powers of 2, and
then 1s and Os are written in the appropriate bit positions. To illustrate:

224+0+22+224+0+2°
=1 0 1 1 0 1,

45,0, =32+ 8+ 4+ 1

Note that a 0 is placed in the 2' and 2* positions, since all positions must be ac-
counted for. Another example is the following:

2°4+0+0+22+22+0+4+0
1 0 0 1 1 0 0,

I

7610 =64 + 8+ 4

Repeated Division

Another method for converting decimal integers uses repeated division by 2. The
conversion, illustrated below for 25,,, requires repeatedly dividing the decimal
number by 2 and writing down the remainder after each division until a quotient of
0 is obtained. Note that the binary result is obtained by writing the first remainder
as the LSB and the last remainder as the MSB.

2 .
£2) = 12 + remainder of 1 LSB
2|

1z

= 6 + remainder of 0

L

K=

= 3 + remainder of 0

IWIN

= 1 + remainder of 1

-

N | =

MSB

= 0 + remainder of 11

J

25]0 =110 0 12

This process, diagrammed in the flowchart of Figure 2-1, can also be used to con-
vert from decimal to any other number system, as we shall see.
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FIGURE 2-1 Flowchart for
repeated-division method of START
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END

Calculator Hint:

If you use a calculator to perform the divisions by 2, you can tell whether the
remainder is 0 or 1 by whether or not the result has a fractional part. For
instance, 25/2 would produce 12.5. Since there is a fractional part (the .5), the
remainder is a 1. If there were no fractional pan, such as 12/2 = 6, then the
remainder would be 0. The following example illustrates this.
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MConvert 3710 to binary. Try to do it on your own before you look at the solution.

Solution
37 " .
—2— = 18.5 — remainder of 1 (LSB)
18
— =90— 0
2
2 = 45— 1
2
4
—=20— 0
2
2
—=10— 0
2
1 -
By =05—> 1 (MSB)

Thus, 37,5 = 100101,.

Counting Range

Recall that using NV bits, we can count through 2" different decimal numbers rang-
ing from 0 to 2% — 1. For example, for N = 4, we can count from 0000, to 1111,,
which is 0,4 to 15,4, for a total of 16 different numbers. Here, the largest decimal
value is 2* — 1 = 15, and there are 2* different numbers.

In general, then, we can state:

Using N bits, we can represent decimal numbers ranging from 0
to 2V — 1, a total of 2" different numbers.

EXAMPLE
2-2

(a) What is the total range of decimal values that can be represented in eight bits?

(b) How many bits are needed to represent decimal values ranging from 0 to
12,5007

Solution

(@) Here we have N = 8. Thus, we can represent decimal numbers from 0 to
2% — 1 = 255. We can verify this by checking to see that 11111111, converts
{0 2554,

(b) With 13 bits, we can count from decimal 0 to 2'* — 1 = 8191. With 14 bits,
we can count from 0 to 2" — 1 = 16,383. Clearly, 13 bits aren’t enough,

but 14 bits will get us up beyond 12,500. Thus, the required number of bits
is 14.
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1. Convert 83, to binary using both methods.

2. Convert 729;, to binary using both methods. Check your answer by convert-
ing back to decimal.

3. How many bits are required to count up to decimal 1 million?

2=-3 OCTAL NUMBER SYSTEM

The octal number system is often used in digital computer work. The octal number
system has a base of eight, meaning that it has eight possible digits: 0, 1, 2, 3, 4, 5,
6, and 7. Thus, each digit of an octal number can have any value from 0 to 7. The
digit positions in an octal number have weights as follows:

g g3 g2 g! g° g1 8’2 g3 '_'8—4 _‘ g3

= octal point

Octal-to-Decimal Conversion

An octal number, then, can easily be converted to its decimal equivalent by multi-
plying each octal digit by its positional weight. For example:

372 =3X 8D +7 X @H +2x @
=3X64+7X8+2X1
= 2504

246 =2XBH +4 X @6 +6x@H
20.7510

Calculator Hint:
Use the »™ function to evaluate powers of 8.

Decimal-to-Octal Conversion

A decimal integer can be converted to octal by using the same repeated-division
method that we used in the decimal-to-binary conversion (Figure 2-1), but with a di-
vision factor of 8 instead of 2. An example follows.
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32—6 = 33 + remainder of 2 LSD
% = 4 + remainder of 1

1

= (0 + remainder of 4 MSD

0 | W

!

2660 = 41

Note that the first remainder becomes the least significant digit (LSD) of the octal
number, and the last remainder becomes the most significant digit (MSD).

Calculator Hint:

If a calculator is used to perform the divisions in the process above, the result
will include a decimal fraction instead of a remainder. The remainder can be
obtained, however, by multiplying the decimal fraction by 8. For example,
266/8 produces 33.25. The remainder becomes 0.25 X 8 = 2. Similarly, 33/8
will be 4.125, and the remainder becomes 0.125 X 8 = 1.

Octal-to-Binary Conversion

The primary advantage of the octal number system is the ease with which conver-
sion can be made between binary and octal numbers. The conversion from octal to
binary is performed by converting each octal digit to its three-bit binary equivalent.
The eight possible digits are converted as indicated in Table 2-1.

TABLE 2-1

Octal Digit 0 1 2 3 4 5 6 7

Binary Equivalent 000 001 010 011 100 101 110 111

Using these conversions, we can convert any octal number to binary by indi-
vidually converting each digit. For example, we can convert 4724 to bintary as fol-
lows:

4 7 2
AR
100 111 010

Thus, octal 472 is equivalent to binary 100111010. As another example, consider
converting 54314 to binary:

5 4 3 1

Ll
101 100 011 001

Thus, 5431g = 101100011001,
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Binary-to-Octal Conversion

Converting from binary integers to octal integers is simply the reverse of the fore-
going process. The bits of the binary number are grouped into groups of three bits
starting at the LSB. Then each group is converted to its octal equivalent (Table 2-1).
To illustrate, consider the conversion of 100111010, to octal.

1001 11010
—
\: \J l
4 7 2

Sometimes the binary number will not have even groups of three bits. For those
cases, we can add one or two 0Os to the left of the MSB of the binary number to fill
out the last group. This is illustrated below for the binary number 11010110.

0 11010110

—_— N

l 2 d
3 2 0g

Note that a 0 was placed to the left of the MSB to produce even groups of three bits.

Counting in Octal
The largest octal digit is 7, so that in counting in octal, a digit position is incre-
mented upward from 0 to 7. Once it reaches 7, it recycles to 0 on the next count
and causes the next higher digit position to be incremented. This is illustrated in
the following sequences of octal counting: (1) 65, 66, 67, 70, 71 and (2) 275, 276,
277, 300.

With N octal digit positions, we can count from 0 up to 8" — 1, for a total of 8"
_different counts. For e¢xample, with three octal digit positions we can count from
000g to 777g, which is 0,4 to 511, for a total of 8 = 512, different octal numbers.

EXAMPLE Convert 1774 to its eight-bit binary equivalent by first converting to octal.
2-3

Solution
177
—8— = 22 + remainder of 1 (LSD)
22
5 = 2 + remainder of 6
2 .
g = 0 + remainder of 2

Thus, 1770 = 261g. Now we can quickly convert this octal number to its binary
equivalent 010110001,, so that we finally have

Note that we chop off the leading 0 to express the result as eight bits.
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This method of decimal-to-octal-to-binary conversion is often quicker than go-
ing directly from decimal to binary, especially for large numbers. Similarly, it is of-
ten quicker to convert binary to decimal by first converting to octal.

Review Questions

. Convert 6144 to decimal.

. Convert 146,, to octal, then from octal to binary.

. Convert 10011101, to octal.

. Write the next three numbers in this octal counting sequence: 624, 625, 626,

NN =

———y ———_—y ———

N

. Convert 975, to binary by first converting to octal.

[=)}

. Convert binary 1010111011 to decimal by first converting to octal.

7. What range of decimal values can be represented by a four-digit octal num-
ber?

2=-4 HEXADECIMAL NUMBER SYSTEM

The hexadecimal number system uses base 16. Thus, it has 16 possible digit sym-
bols. It uses the digits 0 through 9 plus the letters A, B, C, D, E, and F as the 16 digit
symbols. Table 2-2 shows the relationships among hexadecimal, decimal, and bi-
nary. Note that each hexadecimal digit represents a group of four binary digits. It is
important to remember that hex (abbreviation for “hexadecimal”) digits A through F
are equivalent to the decimal values 10 through 15.

TABLE 2-2 e———
Hexadecimal Decimal Binary
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111
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Hex-to-Decimal Conversion

A hex number can be converted to its decimal equivalent by using the fact that each
hex digit position has a weight that is a power of 16. The LSD has a weight of
16° = 1; the next higher digit position has a weight of 16! = 16; the next has a
weight of 16* = 256; and so on. The conversion process is demonstrated in the ex-
amples below:

Calculator Hint:

Again, as with the octal-to-decimal conversions, you can use the y* calculator
function to evaluate the powers of 16.

3566 = 3 X 16° + 5 X 16" + 6 X 16°
=768 + 80 + 6
= 8549

2AF;¢ = 2 X 16% + 10 X 16" + 15 X 16°
512 + 160 + 15
= 6871()

Note that in the second example the value 10 was substituted for A and the value 15
for F in the conversion to decimal.
For practice, verify that 1BC2,4 is equal to 7106,

Decimal-to-Hex Conversion

Recall that we did decimal-to-binary conversion using repeated division by 2, and
decimal-to-octal using repeated division by 8. Likewise, decimal-to-hex conversion
can be done using repeated division by 16 (Figure 2-1). The following two exam-
ples will illustrate.

(a) Convert 423,, to hex.

Solution
—41_262 = 26 + remainder of 7
—’;,—6-' = 1 + remainder of 10

67

1
— = 0 + remainder of 1
16

£ 4

42310 = 1A74s

(b) Convert 214, to hex.
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Solution
1
% = 13 + remainder of 6
13 .
3 = (0 + remainder of 13 -J

21410 = D6[6

Again note that the remainders of the division processes form the digits of the
hex number. Also note that any remainders that are greater than 9 are represented
by the letters A through F.

Calculator Hint:

If a calculator is used to perform the divisions in the conversion process, the
results will include a2 decimal fraction instead of a remainder. The remainder
can be obtained by multiplying the fraction by 16. To illustrate, in Example 2-
4(b) the calculator would have produced

214
s 13.375

The remainder becomes (0.375) X 16 = 6.

Hex-to-Binary Conversion

Like the octal number system, the hexadecimal number system is used primarily as
a “shorthand” method for representing binary numbers. It is a relatively simple mat-
ter to convert a hex number to binary. Each hex digit is converted to its four-bit bi-
nary equivalent (Table 2-2). This is illustrated below for 9F2 .

OF2,4 = 9 F 2
! ! !
=1 001 1111 0010
= 100111110010,

For practice, verify that BA6,s = 101110100110,.

Binary-to-Hex Conversion

Conversion from binary to hex is just the reverse of the process above. The binary
number is grouped into groups of four bits, and each group is converted to its
equivalent hex digit. Zeros (shown shaded) are added, as needed, to complete a
four-bit group.
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1110100110,=001110100110

—_—

3 A 6
= 3A054

In order to perform these conversions between hex and binary, it is necessary to
know the four-bit binary numbers (0000 through 1111) and their equivalent hex dig-
its. Once these are mastered, the conversions can be performed quickly without the
need for any calculations. This is why hex (and octal) are so useful in representing
large binary numbers.

For practice, verify that 101011111, = 15F.

Counting in Hexadecimal

When counting in hex, each digit position can be incremented (increased by 1)
from 0 to F. Once a digit position reaches the value F, it is reset to 0, and the next
digit position is incremented. This is illustrated in the following hex counting se-
quences:

(@) 38, 39, 3A, 3B, 3C, 3D, 3E, 3F, 40, 41, 42
() 6F8, GF9, GFA, 6FB, 6FC, 6FD, GFE, GFF, 700

Note that when there is a 9 in a digit position, it becomes an A when it is incre-
mented.

With N hex digit positions we can count from decimal 0 to 16™ — 1, for a total
of 16" different values. For example, with three hex digits we can count from 000,
to FFF,4, which is 0, to 4095,,, for a total of 4096 = 16> different values.

Usefulness of Hex and Octal

Hex and octal are often used in a digital system as sort of a “shorthand” way to rep-
resent strings of bits. In computer work, strings as long as 64 bits are not uncom-
mon. These binary strings do not always represent a numerical value, but—as you
will find out—can be some type of code that conveys nonnumerical information.
When dealing with a large number of bits, it is more convenient and less error-
prone to write the binary numbers in hex or octal and, as we have seen, it is rela-
tively easy to convert back and forth between binary and either hex or octal. To il-
lustrate the advantage of hex or octal representation of a binary string, suppose you
had in front of you a printout of the contents of 50 memory locations, each of which
was a 16-bit number, and you were checking it against a list. Would you rather
check 50 numbers like this one: 0110111001100111, or 50 numbers like this one:
6E67? And which one would you be more apt to read incorrectly? It is important to
keep in mind, though, that digital circuits all work in binary. Hex and octal are sim-
ply used as a convenience for the humans involved.
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ENAMPLE

2-5

EXAMPLE '
2-6

Convert decimal 378 to a 16-bit binary number by first converting to hexadecimal.

Solution
8
% = 23 + remainder of 10

23 .
— =1 + remainder of 7
16

1 .
— = 0 + remainder of 1
16

Thus, 378, = 17A;4. This hex value can easily be converted to binary
000101111010. Finally, we can express 378,, as a 16-bit number by adding four
leading Os:

37810 = 0000 0001 0111 1010,

Convert B2F,4 to octal.

Solution
It’s easiest first to convert hex to binary, then to octal.

B2Fs = 1011 0010 1111 {convert to binary}
= 101 100 101 111 ({group into three-bit groupings}
= 5 4 5 7s {convert to octal}

Summary of Conversions

Right now your head is probably spinning as you try to keep straight all of these dif-
ferent conversions from one number system to another. You probably realize that
many of these conversions can be done automatically on your calculator just by
pressing a key, but it is important for you to master these conversions so that you
understand the process. Besides, what happens if your calculator battery dies at a
crucial time and you have no handy replacement? The following summary should
help you, but nothing beats practice, practice, practice!

1. When converting from binary [or octal or hex] to decimal, use the method of tak-
ing the weighted sum of each digit position.

2. When converting from decimal to binary [or octal or hex], use the method of re-
peatedly dividing by 2 [or 8 or 16] and collecting remainders (Figure 2-1).

3. When converting from binary to octal [or hex], group the bits in groups of three
[or four], and convert each group into the correct octal [or hex] digit.

4. When converting from octal [or hex] to binary, convert each digit into its three-
bit [or four-bit] equivalent.
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5. When converting from octal to hex [or vice versal, first convert to binary; then
convert the binary into the desired number system.

. Convert 24CE,4 to decimal.
Convert 31174 to hex, then from hex to binary.
. Convert 1001011110110101, to hex.

. Write the next four numbers in this hex counting sequence: E9A, E9B, E9C,
E9D, —_———y ) ey mem— e

5. Convert 3527 to hex.
6. What range of decimal values can be represented by a four-digit hex number?

When numbers, letters, or words are represented by a special group of symbols, we
say that they are being encoded, and the group of symbols is called a code. Proba-
bly one of the most familiar codes is the Morse code, where a series of dots and
dashes represent letters of the alphabet.

We have seen that any decimal number can be represented by an equivalent
binary number. The group of 0s and 1s in the binary number can be thought of as
a code representing the decimal number. When a decimal number is represented
by its equivalent binary number, we call it straight binary coding.

Digital systems all use some form of binary numbers for their internal operation,
but the external world is decimal in nature. This means that conversions between
the decimal and binary systems are being performed often. We have seen that the
conversions between decimal and binary can become long and complicated for
large numbers. For this reason, a means of encoding decimal numbers that com-
bines some features of both the decimal and the binary systems is used in certain
situations.

Binary-Coded-Decimal Code
If each digit of a decimal number is represented by its binary equivalent, the result
is a code called binary-coded-decimal (hereafter abbreviated BCD). Since a deci-
mal digit can be as large as 9, four bits are required to code each digit (the binary
code for 9 is 1001).

To illustrate the BCD code, take a decimal number such as 874. Each digit is
changed to its binary equivalent as follows:

8 7 (decimal)

4
! A \A
1000 0111 0100  (BCD)

As another example, let us change 943 to its BCD-code representation:

9 4 3 (decimal)
l l
1001 0100 0011 (BCD)
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Once again, each decimal digit is changed to its straight binary equivalent. Note that
four bits are always used for each digit.

The BCD code, then, represents each digit of the decimal number by a four-bit
binary number. Clearly only the four-bit binary numbers from 0000 through 1001 are
used. The BCD code does not use the numbers 1010, 1011, 1100, 1101, 1110, and
1111. In other words, only 10 of the 16 possible four-bit binary code groups are
used. If any of the “forbidden” four-bit numbers ever occurs in a machine using the
BCD code, it is usually an indication that an error has occurred.

EXAMPLE
2-7

Convert 0110100000111001 (BCD) to its decimal equivalent.

Solution
Divide the BCD number into four-bit groups and convert each to decimal.

0110 1000 0011 1001

6 8 3 9

EXAMPLE

2-8

Convert the BCD number 011111000001 to its decimal equivalent.

Solution
0111 1100 0001

7 1 1
The forbidden code group indicates an
error in the BCD number.

Comparison of BCD and Binary

It is important to realize that BCD is not another number system like binary, octal,
decimal, and hexadecimal. It is, in fact, the decimal system with each digit encoded
in its binary equivalent. It is also important to understand that a BCD number is not
the same as a straight binary number. A straight binary code takes the complete dec-
imal number and represents it in binary; the BCD code converts each decimal digit
to binary individually. To illustrate, take the number 137 and compare its straight bi-
nary and BCD codes:

137, = 0001 0011 0111  (BCD)

The BCD code requires 12 bits while the straight binary code requires only eight
bits to represent 137. BCD requires more bits than straight binary to represent deci-
mal numbers of more than one digit. This is because BCD does not use all possible
four-bit groups, as pointed out earlier, and is therefore somewhat inefficient.

The main advantage of the BCD code is the relative ease of converting to and
from decimal. Only the four-bit code groups for the decimal digits 0 through 9 need
to be remembered. This ease of conversion is especially important from a hardware
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standpoint because in a digital system it is the logic circuits that perform the con-
versions to and from decimal.

1. Represent the decimal value 178 by its straight binary equivalent. Then en-
code the same decimal number using BCD.

2. How many bits are required to represent an eight-digit decimal number in
BCD?

3. What is an advantage of encoding a decimal number in BCD as compared
with straight binary? What is a disadvantage?

2-0 PUTTING IT ALL TOGETHER

Table 2-3 gives the representation of the decimal numbers 1 through 15 in the bi-
nary, octal, hex number systems, and in BCD code. Examine it carefully and make
sure you understand how it was obtained. Especially note how the BCD represen-
tation always uses four bits for each decimal digit.

TABLE 2-3 ; _

Decimal Binary Octal Hexadecimal BCD
0 0 0 0 0000
1 1 1 0001
2 10 2 2 0010
3 11 3 3 0011
4 100 4 4 0100
5 101 5 5 0101
6 110 6 6 0110
7 111 7 7 0111
8 1000 10 8 1000
9 1001 11 9 1001
10 1010 12 A 0001 0000
11 1011 13 B 0001 0001
12 1100 14 C 0001 0010
13 1101 15 D 0001 0011
14 1110 16 E 0001 0100
15 1111 17 F 0001 0101

2-7 THE BYTE

Most microcomputers handle and store binary data and information in groups of
eight bits, so a special name is given to a string of eight bits: it is called a byte. A
byte always consists of eight bits, and it can represent any of numerous types of
data or information. The following examples will illustrate.
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How many bytes are in a 32-bit string (a string of 32 bits)?

Solution
32/8 = 4, so there are four bytes in a 32-bit string.

B GLIEE . What is the largest decimal value that can be represented in binary using two
2-10 . bytes?

Solution

Two bytes is 16 bits, so the largest binary value will be equivalent to decimal
2'¢ — 1 = 65,535.

How many bytes are needed to represent the decimal value 846,569 in BCD?

Solution

Each decimal digit converts to a four-bit BCD code. Thus, a six-digit decimal num-
ber requires 24 bits. These 24 bits are equal to three bytes. This is diagrammed be-
low.

846

_—/
1000 0100 0110

69 (decimal)
101 0110 1001 (BCD)

O/U\

byte 1 byte 2 byte 3

m 1. How many bytes are needed to represent 235,, in binary?

2. What is the largest decimal value that can be represented in BCD using two
bytes?

2=-8 ALPHANUMERIC CODES

In addition to numerical data, a computer must be able to handle nonnumerical in-
formation. In other words, a computer should recognize codes that represent letters
of the alphabet, punctuation marks, and other special characters as well as numbers.
These codes are called alphanumeric codes. A complete alphanumeric code would
include the 26 lowercase letters, 26 uppercase letters, 10 numeric digits, 7 punc-
tuation marks, and anywhere from 20 to 40 other characters, such as +, /, #, %, *,
and so on. We can say that an alphanumeric code represents all of the various
characters and functions that are found on a computer keyboard. '

ASCII Code

The most widely used alphanumeric code is the American Standard Code for In-
formation Interchange (ASCII). The ASCII (pronounced “askee”) code is a seven-
bit code, and so it has 27 = 128 possible code groups. This is more than enough to
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represent all of the standard keyboard characters as well as control functions such
as the (RETURN) and (LINEFEED) functions. Table 2-4 shows a partial listing of the
ASCII code. In addition to the binary code group for each character, the table gives
the octal and hexadecimal equivalents.

TABLE 2-4  Partial listing of ASCII code.

Character Seven-Bit ASCIl  Octal = Hex Character Seven-Bit ASCII Octal Hex
A 100 0001 101 41 Y 101 1001 131 59
B 100 0010 102 42 Z 101 1010 132 S5A
C 100 0011 103 43 0 011 0000 060 30
D 100 0100 104 44 1 011 0001 061 31
E 100 0101 105 45 2 011 0010 062 32
F 100 0110 106 46 3 011 0011 063 33
G 100 0111 107 47 4 011 0100 064 34
H 100 1000 110 48 5 011 0101 065 35
I 100 1001 111 49 6 011 0110 066 36
J 100 1010 112 4A 7 011 0111 067 37
K 100 1011 113 4B 8 011 1000 070 38
L 100 1100 114 4C 9 011 1001 071 39
M 100 1101 115 4D blank 010 0000 040 20
N 100 1110 116 4E . 010 1110 056 2E
O 100 1111 117 4F ( 010 1000 050 28
P 101 0000 120 50 + 010 1011 053 2B
Q 101 0001 121 51 $ 010 0100 044 24
R 101 0010 122 52 * 010 1010 052 2A
S 101 0011 123 53 ) 010 1001 051 29
T 101 0100 124 54 — 010 1101 055 2D
U 101 0101 125 55 / 010 1111 057 2F
v 101 0110 126 56 R 010 1100 054 2C
W 101 0111 127 57 = 011 1101 075 3D
X 101 1000 130 58 {RETURN) 000 1101 015 0D

(LINEFEED) 000 1010 012 0A

The following is a message encoded in ASCII code. What is the message?

1001000 1000101 1001100 1010000

Solution
Convert each seven-bit code to its hex equivalent. The results are

48 45 4C 50
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Now locate these hex values in Table 2-4 and determine the character represented
by each. The results are

HELP

The ASCII code is used for the transfer of alphanumeric information between a
computer and external devices such as a printer or another computer. A computer
also uses ASCII internally to store the information that an operator types in at the
computer’s keyboard. The following example illustrates this.

An operator is typing in a BASIC program at the keyboard of a certain microcom-
puter. The computer converts each keystroke into its ASCII code and stores the
code as a byte in memory. Determine the binary strings that will be entered into
memory when the operator types in the following BASIC statement:

GOTO 25

Solution
Locate each character (including the space) in Table 2-4 and record its ASCII code.

G 01000111
O 01001111
T 01010100
O 01001111
(space) 00100000
2 00110010
5 00110101

Note that a 0 was added to the leftmost bit of each ASCII code because the codes must
be stored as bytes (eight bits). This adding of an extra bit is called padding with Os.

1. Encode the following message in ASCII code using the hex representation:
“COST = $72.

2. The following padded ASCII-coded message is stored in successive memory
locations in a computer:

01010011 01010100 01001111 01010000

What is the message?
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2-9 PARITY METHOD FOR ERROR DETECTION

The movement of binary data and codes from one location to another is the most
frequent operation performed in digital systems. Here are just a few examples:

B The transmission of digitized voice over a microwave link

B The storage of data in and retrieval of data from external memory devices such as
magnetic tape and disk

B The transmission of digital data from a computer to a remote computer over tele-
phone lines (i.e., using a modem). This is one of the major ways of sending and
receiving information on the Internet.

Whenever information is transmitted from one device (the transmitter) to an-
other device (the receiver), there is a possibility that errors can occur such that
the receiver does not receive the identical information that was sent by the trans-
mitter. The major cause of any transmission errors is electrical noise, which consists
of spurious fluctuations in voltage or current that are present in all electronic sys-
tems to varying degrees. Figure 2-2 is a simple illustration of a type of transmission
error.

__|_|_,_ N

Receiver

Y

Transmitter

[a V]
(9 'V

FIGURE 2-2 Example of noise causing an error in the transmission of digital data.

The transmitter sends a relatively noise-free serial digital signal over a signal line
to a receiver. However, by the time the signal reaches the receiver, it contains a cer-
tain degree of noise superimposed on the original signal. Occasionally, the noise is
large enough in amplitude that it will alter the logic level of the signal, as it does at
point x. When this occurs, the receiver may incorrectly interpret that bit as a logic 1,
which is not what the transmitter has sent.

Most modern digital equipment is designed to be relatively error-free, and the
probability of errors such as shown in Figure 2-2 is very low. However, we must re-
alize that digital systems often transmit thousands, even millions, of bits per second,
so that even a very low rate of occurrence of errors can produce an occasional er-
ror that might prove to be bothersome, if not disastrous. For this reason, many dig-
ital systems employ some method for detection (and sometimes correction) of er-
rors. One of the simplest and most widely used schemes for error detection is the
parity method.

Parity Bit
A parity bit is an extra bit that is attached to a code group that is being transferred

from one location to another. The parity bit is made either 0 or 1, depending on
the number of 1s that are contained in the code group. Two different methods are

used.
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In the even-parity method, the value of the parity bit is chosen so that the total
number of 1s in the code group (including the parity bit) is an even number. For ex-
ample, suppose that the group is 1000011. This is the ASCII character “C.” The code
group has three 1s. Therefore, we will add a parity bit of 1 to make the total num-
ber of 1s an even number. The new code group, including the parity bit, thus be-
comes

11000011
T added parity bit*

If the code group contains an even number of 1s to begin with, the parity bit is
given a value of 0. For example, if the code group were 1000001 (the ASCII code for
“A”), the assigned parity bit would be 0, so that the new code, including the parity
bit, would be 01000001.

The odd-parity method is used in exactly the same way except that the parity
bit is chosen so the total number of 1s (including the parity bit) is an odd number.
For example, for the code group 1000001, the assigned parity bit would be a 1. For
the code group 1000011, the parity bit would be a 0.

Regardless of whether even parity or odd parity is used, the parity bit becomes
an actual part of the code word. For example, adding a parity bit to the seven-bit
ASCII code produces an eight-bit code. Thus, the parity bit is treated just like any
other bit in the code.

The parity bit is issued to detect any single-bit errors that occur during the
transmission of a code from one location to another. For example, suppose that the
character “A” is being transmitted and odd parity is being used. The transmitted
code would be

1 1000001

When the receiver circuit receives this code, it will check that the code contains an
odd number of 1s (including the parity bit). If so, the receiver will assume that the
code has been correctly received. Now, suppose that because of some noise or mal-
function the receiver actually receives the following code:

11000000

The receiver will find that this code has an even number of 1s. This tells the receiver
that there must be an error in the code, since presumably the transmitter and re-
ceiver have agreed to use odd parity. There is no way, however, that the receiver
can tell which bit is in error, since it does not know what the code is supposed to
be.

It should be apparent that this parity method would not work if #wo bits were in
error, because two errors would not change the “oddness” or “evenness” of the
number of 1s in the code. In practice, the parity method is used only in situations
where the probability of a single error is very low and the probability of double er-
rors is essentially zero.

* The parity bit can be placed at either end of the code group but is usually placed to the left of the
MSB.
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When the parity method is being used, the transmitter and the receiver must
have agreement, in advance, as to whether odd or even parity is being used. There
is no advantage of one over the other, although even parity seems to be used more
often. The transmitter must attach an appropriate parity bit to each unit of in-
formation that it transmits. For example, if the transmitter is sending ASCII-coded
data, it will attach a parity bit to each seven-bit ASCII code group. When the re-
ceiver examines the data that it has received from the transmitter, it checks each
code group to see that the total number of 1s (including the parity bit) is consis-
tent with the agreed-upon type of parity. This is often called checking the parity
of the data. In the event that it detects an error, the receiver may send a message
back to the transmitter asking it to retransmit the last set of data. The exact pro-
cedure that is followed when an error is detected will depend on the particular

system.
EXAMPLE |  Computers often communicate with other remote computers over the telephone
2-14 . lines. For example, this is how communication over the Internet takes place. When

one computer is transmitting a message to another, the information is usually en-
coded in ASCII. What actual bit strings would a computer transmit to send the mes-
sage HELLO, using ASCII with even parity?

Solution

First look up the ASCII codes for each character in the message. Then for each code,
count the number of 1s. If it is an even number, attach a 0 as the MSB. If it is an odd
number, attach a 1. Thus, the resulting eight-bit codes (bytes) will all have an even
number of 1s (including parity).

attached even-parity bits

l
H- 0 1001000
E- 1 1000101
L- 1 1001100
L- 1 1001100
O- 1 1001111

Review Questions 1. Attach an odd-parity bit to the ASCII code for the $ symbol, and express the

result in hexadecimal.
2. Attach an even-parity bit to the BCD code for decimal 69.
3. Why can’t the parity method detect a double error in transmitted data?
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2-10 APPLICATIONS

APPLICATION

2-1

APPLICATION

2-2

APPLICATION

2-3

Here are several applications that will serve as a review of some of the concepts
covered in this chapter. These should give a sense of how the various number sys-
tems and codes are used in the digital world. More applications are presented in the
end-of-chapter problems.

A typical CD-ROM can store 650 megabytes of digital data. Since mega = 2?°, how
many bits of data can a CD-ROM hold?

Solution

Remember that a byte is 8 bits. Therefore 650 megabytes is 650 X 2%° X 8 =
5,452,595,200 bits.

An automotive parts shop uses a computer to store all of its parts numbers in 7-bit
ASCII code with an odd parity bit. The codes for each part are stored in successive
memory locations. List the binary contents of memory that stores the part number
JR2-5.

Solution

Take each character of the part number, look up its ASCII code, and attach an odd
parity bit as the leftmost bit. Here are the results:

J = 01001010
R = 01010010
2 = 00110010
- = 10101101
5 = 10110101

A small process-control computer uses octal codes to represent its 12-bit memory
addresses.

(a) How many octal digits are required?
(b) What is the range of addresses in octal?
(c) How many memory locations are there?

Solution

(a) Since 3 bits convert to a single octal digit, 12/3 = 4 octal digits are needed.

(b) The binary range is 000000000000, to 111111111111,. In octal, this becomes
0000g to 7777.

(©) With 4 octal digits, the total number of addresses is 8* = 4096.
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A typical PC uses a 20-bit address code for its memory locations.

(@) How many hex digits are needed to represent a memory address?
(b) What is the range of addresses?

(¢) What is the total number of memory locations?

Solution

(a) Since 4 bits convert to a single hex digit, 20/4 = 5 hex digits are needed.
(b) 00000]6 tO FFFFF16
(¢) With 5 hex digits, the total number of addresses is 16> = 1,048,576.

Most calculators use BCD to store the decimal values as they are entered into the
keyboard and to drive the digit displays.

(@) If a calculator is designed to handle 8-digit decimal numbers, how many bits

does this require?

(b) What bits are stored when the number 375 is entered into the calculator?

Solution

(a) Each decimal digit converts to a 4-bit code in BCD. Therefore, 8 X 4 = 32 bits

are needed.

() 375, converts to 0011 0111 0101 (BCD).

J S I S,

R

SUMMARY

. The octal and hexadecimal number systems are used in digital systems and com-

puters as efficient ways of representing binary quantities.

. In conversions between octal and binary, one octal digit corresponds to three

bits. In conversions between hex and binary, each hex digit corresponds to four
bits.

. The repeated-division method is used to convert decimal numbers to binary, oc-

tal, or hexadecimal.

. Using an N-bit binary number, we can represent decimal values from 0 to 2% —

1.

. The BCD code for a decimal number is formed by converting each digit of the

decimal number to its four-bit binary equivalent.

. A byte is a string of eight bits.
. An alphanumeric code is one that uses groups of bits to represent all of the var-

ious characters and functions that are part of a typical computer’s keyboard. The
ASCII code is the most widely used alphanumeric code.
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8. The parity method for error detection attaches a special parity bit to each trans-
mitted group of bits.

IMPORTANT TERMS*
octal number system byte parity method
hexadecimal number alphanumeric code parity bit
system American Standard Code
straight binary coding for Information
binary-coded-decimal Interchange (ASCID)
(BCD) code
PROBLEMS

SECTIONS 2-1 AND 2-2

2-1. Convert these binary numbers to decimal.
(@ 10110 (d 01011011 (® 1111010111
(b) 10001101 (e) 11111111 (h) 10111111
(©) 100100001001 @ 01110111
2-2.  Convert the following decimal values to binary.
@ 37 (@ 1024 (® 205
®) 14 © 77 (h) 2313
(© 189 ® 405 ® 511
2-3. What is the largest decimal value that can be represented by an eight-bit bi-
nary number? A 16-bit number?
SECTION 2-3
24. Convert each octal number to its decimal equivalent.
(@ 743 (d) 2000 ® 257
® 36 © 165 (h) 1204
© 3777 ® 5
2-5. Convert each of the following decimal numbers to octal.
@ 59 (@ 1024 (® 65,536
(b 372 e 771 M 255
© 919 ® 2313
2-6. Convert each of the octal values from Problem 2-4 to binary.

* These terms can be found in boldface type in the chapter and are defined in the Glossary at the end
of the book.
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2-7. Convert the binary numbers in Problem 2-1 to octal.

2-8. List the octal numbers in sequence from 1654 to 200g.

29. When a large decimal number is to be converted to binary, it is sometimes
easier to convert it first to octal, and then from octal to binary. Try this proce-
dure for 2313, and compare it with the procedure used in Problem 2-2(e).

2-10. How many octal digits are required to represent decimal numbers up to 20,000?

SECTION 2-4

2-11. Convert these hex values to decimal.
@ 92 (d) ABCD (g 2C0
) 1A6 (e) 000F (h) 7FF
(©) 37FD ® 55

2-12. Convert these decimal values to hex.

@ 75 @ 14 © 25,619
) 314 (e) 7245 h) 4095
() 2048 ® 389

2-13. Convert the binary numbers in Problem 2-1 to hexadecimal.

2-14. Convert the hex values in Problem 2-11 to binary.

2-15. List the hex numbers in sequence from 280 to 2A0.

2-16. How many hex digits are required to represent decimal numbers up to 1 million?

SECTION 2-5

2-17. Encode these decimal numbers in BCD.
() 47 @ 6727 (®) 42,689,627
) 962 (e 13 (h) 1204
(o) 187 ® 888

2-18. How many bits are required to represent the decimal numbers in the range
from 0 to 999 using straight binary code? Using BCD code?
2-19. The following numbers are in BCD. Convert them to decimal.

(a) 1001011101010010 (d) 0111011101110101

(b) 000110000100 (e) 010010010010

(o) 011010010101 (® 010101010101
SECTION 2-7

2-20. (a)How many bits are contained in eight bytes?
(b) What is the largest hex number that can be represented in four bytes?
(¢) What is the largest BCD-encoded decimal value that can be represented in
three bytes?

SECTIONS 2-8 AND 2-9
2-21. Represent the statement “X = 25/Y” in ASCII code (excluding quotes). Attach
an odd-parity bit.
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2-22.

2-23.

2-24.

2-25.

2-26.

Attach an even-parity bit to each of the ASCII codes for Problem 2-21, and
give the results in hex.

The following bytes (shown in hex) represent a person’s name as it would be
stored in a computer’s memory. Each byte is a padded ASCII code. Determine
the name of the person.

42 45 4E 20 53 4D 49 54 48

Convert the following decimal numbers to BCD code and then attach an odd-
parity bit.

@) 74 (c) 8884 © 165
o) 38 @ 275 ® 9201

In a certain digital system, the decimal numbers from 000 through 999 are rep-
resented in BCD code. An odd-parity bit is also included at the end of each
code group. Examine each of the code groups below, and assume that each
one has just been transferred from one location to another. Some of the
groups contain errors. Assume that no more than two errors have occurred for
each group. Determine which of the code groups have a single error and
which of them definitely have a double error. (Hint: Remember that this is a
BCD code.)
(2) 1001010110000

parity bit
(b) 0100011101100
(c) 0111110000011
(d) 1000011000101
Suppose that the receiver received the following data from the transmitter of
Example 2-14:

6010 01O0O0O0
110 0 01 01
11001100
110 01 0 0 O
110 01 10 O

What errors can the receiver determine in these received data?

DRILL QUESTIONS

2-27.

Perform each of the following conversions. For some of them, you may want
to try several methods to see which one works best for you. For example, a
binary-to-decimal conversion may be done directly, or it may be done as a
binary-to-octal conversion followed by an octal-to-decimal conversion.

@ 141710 S 2

® 2550 e 2

(© 11010001, = —_________ 10

(@ 1110101000100111, = —(________ 10
@ 249740 = - ___ 8

@ 51y = 8

® 2358 = oo 10
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2-28.

2-29.

2-30.

231,
2-32.

2-33.

h) 43165 = ____________ 10

@ TA96 = e 10

G 3ElCe= 10

& 160010 = - 16

@ 381870 = ________ 6

(m) 865, = ——_________ (BCD)

(n) 100101000111 BCD) = . ______ 10
(0) 405 = . __ 16

P B34y= oo 8

(@ 01110100 (BCD) = —__________ 2
™ 111010 = o __ (BCD)

Represent the decimal value 37 in each of the following ways.
(a) straight binary (c) hex (e) octal

(b) BCD (d) ASCII (i.e., treat each digit as a character)

Fill in the blanks with the correct word or words.

(a) Conversion from decimal to __ . _______ requires repeated division
by 8.

(b) Conversion from decimal to hex requires repeated division by

(¢) In the BCD code, each ___________._ is converted to its four-bit binary
equivalent.

(d The - _____ code has the characteristic that only one bit changes
in going from one step to the next.

(e) A transmitter attachesa ——__________ to a code group to allow the re-
ceiver to detect ——_________ .

@® The ____________ code is the most common alphanumeric code used
in computer systems.

® and . _________ are often used as a convenient

way to represent large binary numbers.
(h) A string of eight bitsis called a - _________ .
Write the binary number that results when each of the following numbers is
incremented by one.
(@ 0111 (b) 010000 (o 1110
Repeat Problem 2-30 for the decrement operation.
Write the number that results when each of the following is incremented.
@ 77775 (©) 20005  (€) 9FF4
®) 777716 () 2000,  (® 100046
Repeat Problem 2-32 for the decrement operation.

CHALLENGING EXERCISES

2-34.

In a microcomputer the addresses of memory locations are binary numbers

that identify each memory circuit where a byte is stored. The number of bits

that make up an address will depend on how many memory locations there

are. Since the number of bits can be very large, the addresses are often spec-

ified in hex instead of binary.

(a) If a microcomputer uses a 20-bit address, how many different memory lo-
cations are there?

(b) How many hex digits are needed to represent the address of a memory
location?

(¢) What is the hex address of the 256th memory location? (Note: The first ad-
dress is always 0.)
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2-35.

2-36.

2-37.

In an audio CD, the audio voltage signal is typically sampled about 44,000

times per second, and the value of each sample is recorded on the CD surface

as a binary number. In other words, each recorded binary number represents

a single voltage point on the audio signal waveform.

(@ If the binary numbers are six bits in length, how many different voltage
values can be represented by a single binary number? Repeat for eight bits
and ten bits.

(b) If ten-bit numbers are used, how many bits will be recorded on the CD in
1 second?

(o) If a CD can typically store 5 billion bits, how many seconds of audio can
be recorded when ten-bit numbers are used?

A black-and-white digital camera lays a fine grid over an image and then mea-

sures and records a binary number representing the level of gray it sees in

each cell of the grid. For example, if four-bit numbers are used, the value of
black is set to 0000 and the value of white to 1111, and any level of gray is
somewhere between 0000 and 1111. If six-bit numbers are used, black is

000000, white is 111111, and all grays are between the two.

Suppose we wanted to distinguish among 254 different levels of gray
within each cell of the grid. How many bits would we need to use to repre-
sent these levels?

Construct a table showing the binary, octal, hex, and BCD representations of

all decimal numbers from 0 to 15. Compare your table with Table 2-3.

ANSWERS TO SECTION REVIEW QUESTIONS

SECTION 2-1
1. 2267 2. 32768

SECTION 2-2
1. 1010011 2. 1011011001

SECTION 2-3
1. 396 2. 222; 010010010

631 5. 1111001111 6. 699

SECTION 2-4

SECTION 2-7
1. One 2. 9999

SECTION 2-8
3. 20 bits 1. 43, 4F, 53, 54, 20, 3D, 20, 24, 37,32 2. STOP
SECTION 2-9
3.235 44 627, 630, 1. A4 2. 001101001 3. Two errors in the data
7. 0 to 4095 would not change the oddness or evenness of the

number of 1s in the data.

1. 9422 2. C2D; 110000101101 3. 97B5

4. E9E, EOF, EAQ, EAl 5. 757

SECTION 2-5

6. 0to 65,535

1. 10110010,; 000101111000 (BCD) 2. 32
3. Advantage: ease of conversion. Disadvantage: BCD

requires more bits.
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B OBJECTIVES

Upon completion of this chapter, you will be able to:
B Perform the three basic logic operations.

W Describe the operation of and construct the truth tables for the AND, NAND, OR,
and NOR gates, and the NOT (INVERTER) circuit.

B Draw timing diagrams for the various logic-circuit gates.

m Write the Boolean expression for the logic gates and combinations of logic
gates.

® Implement logic circuits using basic AND, OR, and NOT gates.

B Appreciate the potential of Boolean algebra to simplify complex logic circuits.

B Use DeMorgan’s theorems to simplify logic expressions.

m Use either of the universal gates (NAND or NOR) to implement a circuit repre-
sented by a Boolean expression.

B Explain the advantages of constructing a logic-circuit diagram using the alter-
nate gate symbols versus the standard logic-gate symbols.

B Describe the concept of active-LLOW and active-HIGH logic signals.
B Draw and interpret the IEEE/ANSI standard logic-gate symbols.

B INTRODUCTION

As pointed out in Chapter 1, digital (logic) circuits operate in the binary mode
where each input and output voltage is either a 0 or a 1; the 0 and 1 designations
represent predefined voltage ranges. This characteristic of logic circuits allows us
to use Boolean algebra as a tool for the analysis and design of digital systems.
Boolean algebra is a relatively simple mathematical tool that allows us to describe
the relationship between a logic circuit’s output(s) and its inputs as an algebraic
equation (a Boolean expression). In this chapter we will study the most basic logic
circuits—Ilogic gates—which are the fundamental building blocks from which all
other logic circuits and digital systems are constructed. We will see how the opera-
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tion of the different logic gates and the more complex circuits formed from combi-
nations of logic gates can be described and analyzed using Boolean algebra. We
will also get a glimpse of how Boolean algebra can be used to simplify a circuit’s
Boolean expression so that the circuit can be rebuilt using fewer logic gates and/or
fewer connections. Much more will be done with circuit simplification in Chapter 4.

Boolean algebra is also a valuable tool for coming up with a logic circuit that
will produce a desired input/output relationship. We will introduce the basic idea
in this chapter and will cover it more thoroughly under logic circuit design in Chap-
ter 4.

Since Boolean algebra expresses a circuit’s operation in the form of an alge-
braic equation, it is ideal for inputting the operation of a logic circuit into a com-
puter that is running software that needs to know what the circuit looks like. The
software may be a circuit simplification routine that takes the input Boolean alge-
bra equation, simplifies it, and comes up with a simplified version of the original
logic circuit. Another application would be the software that is used to generate
the fuse maps needed to program a PLD (programmable logic device). The opera-
tor punches in the Boolean equations for the desired circuit operation, and the
software converts it to a fuse map. We will study this process in Chapter 4.

Clearly, Boolean algebra is an invaluable tool in describing, analyzing, design-
ing, and implementing digital circuits. The student who expects to work in the digi-
tal field must work hard at understanding and becoming comfortable with Boolean
algebra (believe us, it's much, much easier than conventional algebra). Do all of
the examples, exercises, and problems, even the ones your instructor doesn’t as-
sign. When those run out, make up your own. The time you spend will be well
worth it as you see your skills improve and your confidence grow.

[ S N .

LI L1 I

=

3=1 BOOLEAN CONSTANTS AND VARIABLES

56

Boolean algebra differs in a major way from ordinary algebra in that Boolean con-
stants and variables are allowed to have only two possible values, 0 or 1. A Boolean
variable is a quantity that may, at different times, be equal to either 0 or 1. Boolean
variables are often used to represent the voltage level present on a wire or at the in-
put/output terminals of a circuit. For example, in a certain digital system the
Boolean value of 0 might be assigned to any voltage in the range from 0 to 0.8 V
while the Boolean value of 1 might be assigned to any voltage in the range 2to 5 V.*

Thus, Boolean 0 and 1 do not present actual numbers but instead represent the
state of a voltage variable, or what is called its logic level. A voltage in a digital cir-
cuit is said to be at the logic 0 level or the logic 1 level, depending on its actual nu-
merical value. In digital logic several other terms are used synonymously with 0 and

*  Voltages between 0.8 and 2 V are undefined (neither 0 nor 1) and under normal circumstances should
not occur.
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TABLE 3-1
Logic 0 Logic 1
False True
Off On
Low High
No Yes

Open switch Closed switch

1. Some of the more common ones are shown in Table 3-1. We will use the 0/1 and
LOW/HIGH designations most of the time.

As we said in the introduction, Boolean algebra is a means for expressing the
relationship between a logic circuit’s inputs and outputs. The inputs are considered
logic variables whose logic levels at any time determine the output levels. In all our
work to follow, we shall use letter symbols to represent logic variables. For exam-
ple, the letter A might represent a certain digital circuit input or output, and at any
time we must have either A = 0 or A = 1: if not one, then the other.

Because only two values are possible, Boolean algebra is relatively easy to
work with as compared with ordinary algebra. In Boolean algebra there are no frac-
tions, decimals, negative numbers, square roots, cube roots, logarithms, imaginary
numbers, and so on. In fact, in Boolean algebra there are only three basic opera-
tions: OR, AND, and NOT.

These basic operations are called logic operations. Digital circuits called logic
gates can be constructed from diodes, transistors, and resistors connected in such a
way that the circuit output is the result of a basic logic operation (OR, AND, NOT)
performed on the inputs. We will be using Boolean algebra first to describe and an-
alyze these basic logic gates, then later to analyze and design combinations of logic
gates connected as logic circuits.

3-2 TRUTH TABLES

A truth table is a means for describing how a logic circuit’s output depends on the
logic levels present at the circuit’s inputs. Figure 3-1(a) illustrates a truth table for
one type of two-input logic circuit. The table lists all possible combinations of logic
levels present at inputs 4 and B along with the corresponding output level x. The
first entry in the table shows that when A and B are both at the 0 level, the output
x is at the 1 level or, equivalently, in the 1 state. The second entry shows that when
input B is changed to the 1 state, so that A = 0 and B = 1, the output x becomes a
0. In a similar way, the table shows what happens to the output state for any set of
input conditions.

Figures 3-1(b) and (¢) show samples of truth tables for three- and four-input
logic circuits. Again, each table lists all possible combinations of input logic levels
on the left, with the resultant logic level for output x on the right. Of course, the ac-
tual values for x will depend on the type of logic circuit.

Note that there are 4 table entries for the two-input truth table, 8 entries for a
three-input truth table, and 16 entries for the four-input truth table. The number of
input combinations will equal 2" for an Minput truth table. Also note that the list of
all possible input combinations follows the binary counting sequence, and so it is
an easy matter to write down all of the combinations without missing any.
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{a)

FIGURE 3-1 Example truth Output A B CHlx Al B C D x
tables for (a) two-input, (b) Inputs 0 0 O0]fo0 0 0 0 o0f]|o0
three-input, and (¢) four-input l 0 0 1 1 0 0 0 1fj|o0
circuits. ¢ l 0 1 0 1 o 0 1 0 0
A B|]x o 1 11{]o 0 0o 1 1|1

0 0] 1.0 0}f{0 0 1 0 0}f1

0o 1}]o 1. 0 1o o 1 0o 1lfo

1 01 1 1 offo 0o 1 1 o0fjo

1 1}{o0 11 1 0 1 1 1|1

1 0o 0 O 0

(b) 10 0 1]]o

1 0 1 0 0

A o—>] 1 0o 1 1 1

B e—3> 7 —ex 1 1 0 o0f]o

1 1 0 1 0

1 1 1 0 0

1 1 1 1 1

{c)

Review Questions 1." What is the output state of the four-input circuit represented in Figure 3-1(c)

when all inputs except B are 1?
2. Repeat question 1 for the following input conditions: A = 1,B=0,C=1,D= 0.

3. How many table entries are needed for a five-input circuit?

3=3 OR OPERATION WITH OR GATES

The OR operation is the first of the three basic Boolean operations to be learned.
The truth table in Figure 3-2(a) shows what happens when two logic inputs, 4 and
B, are combined using the OR operation to produce the output x. The table shows
that x is a logic 1 for every combination of input levels where one or more inputs
are 1. The only case where x is a 0 is when both inputs are 0.

The Boolean expression for the OR operation is

x=A+ B

In this expression, the + sign does not stand for ordinary addition; it stands for the
OR operation. The OR operation is similar to ordinary addition except for the case
where A and B are both 1; the OR operation produces 1+ 1 =1, not 1 + 1= 2.
In Boolean algebra, 1 is as high as we go, so we can never have a result greater

FIGURE 3-2 (a) Truth table OR
defining the OR operation; (b) A Bl s=A+B
circuit symbol for a two-input OR g ¢ 0 A T re g
gate. 0 1 1
L 1

OR Gate

(a) (b)
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than 1. The same holds true for combining three inputs using the OR operation.
Here we have x = A+ B+ C If we consider the case where all three inputs
are 1, we have

x=1+1+1=1

The expression x = A + B is read as “x equals A OR B,” which means that x will
be 1 when A4 or B or both are 1. Likewise, the expression x = A + B + C'is read as
“x equals A OR B OR C,” which means that x will be 1 when A4 or B or C or any
combination of them are 1.

OR Gate

In digital circuitry an OR gate* is a circuit that has two or more inputs and whose
output is equal to the OR combination of the inputs. Figure 3-2(b) is the logic sym-
bol for a two-input OR gate. The inputs 4 and B are logic voltage levels, and the
output x is a logic voltage level whose value is the result of the OR operation on 4
and B, that is, x = A + B. In other words, the OR gate operates in such a way that
its output is HIGH (logic 1) if either input A or B or both are at a logic 1 level. The
OR gate output will be LOW (logic 0) only if all its inputs are at logic 0.

This same idea can be extended to more than two inputs. Figure 3-3 shows a
three-input OR gate and its truth table. Examination of this truth table shows again
that the output will be 1 for every case where one or more inputs are 1. This gen-
eral principle is the same for OR gates with any number of inputs.

Using the language of Boolean algebra, the output x can be expressed as x =
A+ B+ ¢, where again it must be emphasized that the + represents the OR oper-
ation. The output of any OR gate, then, can be expressed as the OR combination of
its various inputs. We will put this to use when we subsequently analyze logic cir-
cuits.

Summary of the OR Operation

The important points to remember concerning the OR operation and OR gates
are:

1. The OR operation produces a result (output) of 1 whenever any input is a 1.
Otherwise the output is 0.

FIGURE 3-3 Symbol and truth
table for a three-input OR gate.

x=A+B+C

.{\x:A+B+C
— ¢

OwW>
®

s a0 o00 o>
- 200 —=-=00|W
0O =20 =0 =00

* The term gate comes from the inhibit/enable operation discussed in Chapter 4.
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2. An OR gate is a logic circuit that performs an OR operation on the circuit’s in-
puts.

3. The expression x = A + Bis read as “x equals A OR B.”

In many industrial control systems it is required to activate an output function
whenever any one of several inputs is activated. For example, in a chemical
process it may be desired that an alarm be activated whenever the process
temperature exceeds a maximum value or whenever the pressure goes above a
certain limit. Figure 3-4 is a block diagram of this situation. The temperature
transducer circuit produces an output voltage proportional to the process
temperature. This voltage, Vi, is compared with a temperature reference voltage,
Vg, in a voltage comparator circuit. The comparator output, 75, is normally a low
voltage (logic 0), but it switches to a high voltage (logic 1) when Vi exceeds Vi,
indicating that the process temperature is too high. A similar arrangement is used
for the pressure measurement, so that its associated comparator output, Py, goes
from low to high when the pressure is too high.

r————=== b |
| |
| |
| Temperature PV - Tw
: transducer : | Comparator [~
| |
| |
| |
: : Vg Alarm
1 |
| [ v
| Pressure P Py
: transducer : Comparator -
| |
I Chemical process N |

Vg

FIGURE 34 Example of the use of an OR gate in an alarm system.

Since we want the alarm to be activated when either temperature or pressure
is too high, it should be apparent that the two comparator outputs can be fed to a
two-input OR gate. The OR gate output thus goes HIGH (1) for either alarm
condition and will activate the alarm. This same idea can obviously be extended to
situations with more than two process variables.

Attt U Determine the OR gate output in Figure 3-5. The OR gate inputs A and B are
32 | varying according to the timing diagrams shown. For example, A starts out LOW at
' time 4, goes HIGH at #, back LOW at £, and so on.

Solution

The OR gate output will be HIGH whenever any input is HIGH. Between time £,
and ¢ both inputs are LOW, so OUTPUT = LOW. At ¢ input A goes HIGH while
B remains LOW. This causes OUTPUT to go HIGH at # and stay HIGH until %
since during this interval one or both inputs are HIGH. At # input B goes from 1
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A 1
A Output = A + B
0 | 1 | i |
i l I | B
71 r | T
B | | ! I |
| | I 1 I
U getl ;! B
| | | [ |1
| | | Lo ||
| | | L |l o
1t — i —
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Time
FIGURE 3-5 Example 3-2.
to 0 so that now both inputs are LOW, and this drives OUTPUT back to LOW. At #

A goes HIGH sending OUTPUT back HIGH where it stays for the rest of the
shown time span.

EXAMPLE For the situation depicted in Figure 3-6, determine the waveform at the OR gate
3'3A . output

1 Output
ouT | | | | ®
0

Time

FIGURE 3-6 Examples 3-3A and B.

Solution

The three OR gate inputs A, B, and C are varying, as shown by their waveform
diagrams. The OR gate output is determined by realizing that it will be HIGH
whenever any of the three inputs is at a HIGH level. Using this reasoning, the OR
output waveform is as shown in the figure. Particular attention should be paid to
what occurs at time 4. The diagram shows that at that instant of time, input A4 is
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going from HIGH to LOW while input B is going from LOW to HIGH. Since these
inputs are making their transitions at approximately the same time, and since these
transitions take a certain amount of time, there is a short interval when these OR
gate inputs are both in the undefined range between 0 and 1. When this occurs, the
OR gate output also becomes a value in this range, as evidenced by the glitch or
spike on the output waveform at #. The occurrence of this glitch and its size
(amplitude and width) depend on the speed with which the input transitions occur.

What would happen to the glitch in the output in Figure 3-6 if input C sat in the

HIGH state while A and B were changing at time #?

Solution

With the C input HIGH at #, the OR gate output will remain HIGH regardless of
what is occurring at the other inputs, because any HIGH input will keep an OR
gate output HIGH. Therefore, the glitch will not appear in the output.

1. What is the only set of input conditions that will produce a LOW output for
any OR gate?
2. Write the Boolean expression for a six-input OR gate.

3. If the A input in Figure 3-6 is permanently kept at the 1 level, what will the re-
sultant output waveform be?

3=4 AND OPERATION WITH AND GATES

The AND operation is the second basic Boolean operation. The truth table in Fig-
ure 3-7(a) shows what happens when two logic inputs, 4 and B, are combined us-
ing the AND operation to produce output x. The table shows that x is a logic 1 only
when both A and B are at the logic 1 level. For any case where one of the inputs is
0, the output is 0.

The Boolean expression for the AND operation is

x=A-B

In this expression the - sign stands for the Boolean AND operation and not the mul-
tiplication operation. However, the AND operation on Boolean variables operates

FIGURE 3-7 (a) Truth table for AND

the AND operation; (b) AND gate

symbol.

—-‘*-*OOJ>
- O - 0Ol

A

0

0 A o—]
It
1 B &—

AND gate
(a) (b)




FIGURE 3-8 Truth table and
symbol for a three-input AND
gate.
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the same as ordinary multiplication, as examination of the truth table shows, so we
can think of them as being the same. This characteristic can be helpful when evalu-
ating logic expressions that contain AND operations.

The expression x = A - B is read as “x equals A AND B,” which means that x
will be 1 only when A and B are both 1. The - sign is usually omitted so that the ex-
pression simply becomes x = AB. For the case when three inputs are ANDed, we
have x=A4- B- C= ABC. This is read as “x equals A AND B AND C,” which
means that x will be 1 only when 4 and Band Care all 1.

AND Gate

The logic symbol for a two-input AND gate is shown in Figure 3-7(b). The AND
gate output is equal to the AND product of the logic inputs; that is, x = AB. In
other words, the AND gate is a circuit that operates in such a way that its output
is HIGH only when all its inputs are HIGH. For all other cases the AND gate out-
put is LOW.

This same operation is characteristic of AND gates with more than two inputs.
For example, a three-input AND gate and its accompanying truth table are shown in
Figure 3-8. Once again, note that the gate output is 1 only for the case where A =
B = C=1. The expression for the output is x = ABC. For a four-input AND gate,
the output is x = ABCD, and so on.

A o—I
x = ABC
C &—

Note the difference between the symbols for the AND gate and the OR gate.
Whenever you see the AND symbol on a logic-circuit diagram, it tells you that the
output will go HIGH only when all inputs are HIGH. Whenever you see the OR
symbol, it means that the output will go HIGH when any input is HIGH.

x = ABC

- a2 0000
- 200 - -—=00|W
- O0O-=0 =0 -=00

el eololoNolNoNol
[ve)

Summary of the AND Operation

1. The AND operation is performed the same as ordinary multiplication of 1s and 0s.

2. An AND gate is a logic circuit that performs the AND operation on the circuit’s
inputs.

3. An AND gate output will be 1 only for the case when all inputs are 1; for all
other cases the output will be 0.

4. The expression x = AB is read as “x equals A AND B.”

Determine the output x from the AND gate in Figure 3-9 for the given input
waveforms.
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FIGURE 3-9 Example 3-4.

Solution

The output of an AND gate is determined by realizing that it will be HIGH only
when all inputs are HIGH at the same time. For the input waveforms given, this
condition is met only during intervals t,—# and f5—#. At all other times, one or
more of the inputs are 0, thereby producing a LOW output. Note that input level
changes that occur while the other input is LOW have no effect on the output.

Determine the output waveform for the AND gate shown in Figure 3-10.

FIGURE 3-10 Examples p l I I I | l I | I I l I A

3-5A and B. «

Solution

The output x will be at 1 only when A4 and B are both HIGH at the same time.
Using this fact, we can determine the x waveform as shown in the figure.

Notice that the x waveform is 0 whenever B is 0, regardless of the signal at A.
Also notice that whenever B is 1, the x waveform is the same as A. Thus, we can
think of the B input as a control input whose logic level determines whether or
not the A waveform gets through to the x output. In this situation, the AND gate is
used as an inbibit circuit. We can say that B = 0 is the inhibit condition producing
a 0 output. Conversely, B =1 is the enable condition, which enables A4 to reach
the output. This inhibit operation is an important application of AND gates, which
will be encountered later.

What will happen to the x output waveform in Figure 3-10 if the B input is kept at
the 0 level?
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Solution

With B kept LOW, the x output will also stay LOW. This can be reasoned in two
different ways. First, with B=0 we have x=A4- B= A4 -0 = 0, since anything
multiplied (ANDed) by 0 will be 0. Another way to look at it is that an AND gate
requires that all inputs be HIGH in order for the output to be HIGH, and this
cannot happen if B is kept LOW.

1. What is the only input combination that will produce a HIGH at the output of
a five-input AND gate?

2. What logic level should be applied to the second input of a two-input AND
gate if the logic signal at the first input is to be inhibited (prevented) from
reaching the output?

3. True or false: An AND gate output will always differ from an OR gate output
for the same input conditions.

3=3 NOT OPERATION

The NOT operation is unlike the OR and AND operations in that it can be per-
formed on a single input variable. For example, if the variable A4 is subjected to the
NOT operation, the result x can be expressed as

x=A

where the overbar represents the NOT operation. This expression is read as “x
equals NOT A” or “x equals the inverse of A” or “x equals the complement of A.”
Each of these is in common usage, and all indicate that the logic value of x = A4 is
opposite to the logic value of A. The truth table in Figure 3-11(a) clarifies this for the
two cases A = 0 and A = 1. That is,

1=0  because NOT 1 is 0
and
0=1  because NOT 0 is 1
FIGURE 3-11 (a) Truth table; NOT NOT Al H |’|
(b) symbol for the INVERTER Al x=A 0
(NOT circuit); (¢) sample 0 P A x=A
waveforms. 1 0 1
(a) Presence of small 0
circle always denotes
inversion (c)

(b}
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The NOT operation is also referred to as inversion or complementation, and
these terms will be used interchangeably throughout the book. Although we will al-
ways use the overbar indicator to represent inversion, it is important to mention that
another indicator for inversion is the prime symbol ('). That is,

A =4

Both should be recognized as indicating the inversion operation.

NOT Gircuit (INVERTER)

Figure 3-11(b) shows the symbol for a NOT circuit, which is more commonly
called an INVERTER. This circuit a/ways has only a single input, and its output logic
level is always opposite to the logic level of this input. Figure 3-11(c) shows how
the INVERTER affects an input signal. It inverts (complements) the input signal at all
points on the waveform so that whenever the input = 0, output = 1, and vice versa.

Summary of Boolean Operations
The rules for the OR, AND, and NOT operations may be summarized as follows:

OR AND NOT
0+0=0 0-0=0 0=1
0+1=1 0-1=0 1=0
1+0=1 1-0=0
1+1=1 1-1=

Review Questions 1. The output of the INVERTER of Figure 3-11 is connected to the input of a sec-

ond INVERTER. Determine the output level of the second INVERTER for each
level of input A.

2. The output of the AND gate in Figure 3-7 is connected to the input of an IN-
VERTER. Write the truth table showing the INVERTER output, y, for each com-
bination of inputs 4 and B.

3-0 DESCRIBING LOGIC CIRCUITS ALGEBRAICALLY

FIGURE 3-12 Logic circuit with A @=——-i

its Boolean expression.

Any logic circuit, no matter how complex, can be completely described using the
three basic Boolean operations, because the OR gate, AND gate, and NOT circuit
are the basic building blocks of digital systems. For example, consider the circuit in
Figure 3-12. This circuit has three inputs, A4, B, and C, and a single output, x. Utiliz-
ing the Boolean expression for each gate, we can easily determine the expression
for the output.

x=A+B+C

o
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The expression for the AND gate output is written A - B. This AND output is
connected as an input to the OR gate along with C, another input. The OR gate op-
erates on its inputs so that its output is the OR sum of the inputs. Thus, we can ex-
press the OR output as x = A - B+ C. (This final expression could also be written
as x = C+ A- B, since it does not matter which term of the OR sum is written first.)

Occasionally, there may be confusion as to which operation in an expression is
performed first. The expression A - B+ C can be interpreted in two different ways:
(1) A- Bis ORed with C, or (2) A is ANDed with the term B + C. To avoid this con-
fusion, it will be understood that if an expression contains both AND and OR oper-
ations, the AND operations are performed first, unless there are parentbeses in the
expression, in which case the operation inside the parentheses is to be performed
first. This is the same rule that is used in ordinary algebra to determine the order of
operations.

To illustrate further, consider the circuit in Figure 3-13. The expression for the
OR gate output is simply A + B. This output serves as an input to the AND gate
along with another input, C. Thus, we express the output of the AND gate as x =
(A + B) - C. Note the use of parentheses here to indicate that A and B are ORed
Jirst, before their OR sum is ANDed with C. Without the parentheses it would be in-
terpreted incorrectly, since A + B- C'means that A is ORed with the product B- C.

FIGURE 3-13  Logic circuit A A+B ‘

whose expression requires

parentheses. B } x=(A+B)-C
Cco——

Circuits Containing INVERTERs

Whenever an INVERTER is present in a logic-circuit diagram, its output expression
is simply equal to the input expression with a bar over it. Figure 3-14 shows two ex-
amples using INVERTERs. In Figure 3-14(a), input A is fed through an INVERTER,
whose output is therefore A. The INVERTER output is fed to an OR gate together
with B, so that the OR output is equal to A + B. Note that the bar is over the A4
alone, indicating that A is first inverted and then ORed with B.

In Figure 3-14(b) the output of the OR gate is equal to A + Band is fed through
an INVERTER. The INVERTER output is therefore equal to (4 + B), since it in-
verts the complete input expression. Note that the bar covers the entire expression
(A + B). This is important because, as will be shown later, the expressions (4 + B)
and (4 + B) are not equivalent. The expression (4 + B) means that A4 is ORed
with B and then their OR sum is inverted, whereas the expression (4 + B) indi-
cates that A is inverted and B is inverted and the results are then ORed together.

Figure 3-15 shows two more examples, which should be studied carefully. Note
especially the use of two separate sets of parentheses in Figure 3-15(b). Also notice

FIGURE 3-14 Circuits using

INVERTERS. A ALB

(a) (b)
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°
A A+ D x = ABC(A + D)
A+D J|>%

A A+B

O W >
®

(A +B)C

D+ (A +B)C

x=[D+(A+B)C]-E
FIGURE 3-15 More examples.

in Figure 3-15(a) that the input variable A4 is connected as an input to two different
gates.

LTV T TDER 1. In Figure 3-15(a) change each AND gate to an OR gate, and change the OR

gate to an AND gate. Then write the expression for output x.

2. In Figure 3-15(b) change each AND gate to an OR gate, and each OR gate to
an AND gate. Then write the expression for x.

3-7 EVALUATING LOGIC-CIRCUIT OUTPUTS

Once we have the Boolean expression for a circuit output we can obtain the output
logic level for any set of input levels. For example, suppose that we want to know
the logic level of the output x for the circuit in Figure 3-15(a) for the case where A4
=0,B=1, C=1,and D= 1. As in ordinary algebra, the value of x can be found
by “plugging” the values of the variables into the expression and performing the in-
dicated operations as follows:

x = ABC(A + D)
=0-1-1-0+ 1D
=1-1-1-0+ 1
=1-1-1-(D
=1-1-1-0

0



FIGURE 3-16 Determining the

output level from a circuit
diagram.
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As another illustration, let us evaluate the output of the circuit in Figure 3-15(b) for
A=0,B=0,C=1,D=1,and E= 1.

x=[D+ A+ BCl-E
=N1+O+0-1-1

=[1+0-1]-1
=1 +0-1
=M1 +1-1
=1-1

=1

In general, the following rules must always be followed when evaluating a Boolean
expression:

1. First, perform all inversions of single terms; that is, 0 = 1 or 1 = 0.
2. Then perform all operations within parentheses.

3. Perform an AND operation before an OR operation unless parentheses indicate
otherwise.

4. If an expression has a bar over it, perform the operations inside the expression
first and then invert the result.

For practice, determine the outputs of both circuits in Figure 3-15 for the case
where all inputs are 1. The answers are x = 0 and x = 1, respectively.

Determining Output Level from a Diagram

The output logic level for given input levels can also be determined directly from
the circuit diagram without using the Boolean expression. This technique is often
used by technicians during the troubleshooting or testing of a logic system since it
also tells them what each gate output is supposed to be as well as the final output.
To illustrate, the circuit of Figure 3-15(a) is redrawn in Figure 3-16 with the input
levels A=0, B=1, ¢ =1, and D = 1. The procedure is to start from the inputs
and to proceed through each INVERTER and gate, writing down each of their out-
puts in the process until the final output is reached.

In Figure 3-16, AND gate 1 has all three inputs at the 1 level because the IN-
VERTER changes the A = 0 to a 1. This condition produces a 1 at the AND output
since 1-1-1= 1. The OR gate has inputs of 1 and 0, which produces a 1 output
since 1 + 0 = 1. This 1 is inverted to 0 and applied to AND gate 2 along with the 1
from the first AND output. The 0 and 1 inputs to AND gate 2 produce an x output
of 0 because 0-1 = 0.

O m >
wnou
- 0o
?Q
o
w
x
1
o
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EXAMPLE Determine the output in Figure 3-16 for the condition where all inputs are LOW.
3-6
Solution
With A= B= C= D=0, the output of AND gate 1 will be LOW. This LOW
places a LOW at the input of AND gate 2, which automatically produces x = 0,
regardless of the levels at other points in the circuit. This example shows that it is
not always necessary to determine the logic level at every point in order to
determine the output level.

Review Queslions 1. Use the expression for x to determine the output of the circuit in Figure

3-15(a) for the conditions A =0, B=1, C=1,and D= 0.

2. Use the expression for x to determine the output of the circuit in Figure
3-15(b) for the conditions A= B=E=1, C= D= 0.

3. Determine the answers to questions 1 and 2 by finding the logic levels present
at each gate input and output as was done in Figure 3-16.

3-8 IMPLEMENTING CIRCUITS FROM BOOLEAN EXPRESSIONS

When the operation of a circuit is defined by a Boolean expression, we can draw a
logic-circuit diagram directly from that expression. For example, if we needed a cir-
cuit that was defined by x = 4 - B C, we would immediately know that all that was

AC o
_BC y = AC + BC + ABC
ABC

(a)

A &—@

; 3 ® y = AC + BC + ABC

D=
c *——»—+>o§j —

FIGURE 3-17 Constructing a logic circuit from a Boolean expression.




EXAMPLE

3-7

Review Questions

Section 3-9 / NOR Gates and NAND Gates b 71

needed was a three-input AND gate. If we needed a circuit that was defined by x =
A + B, we would use a two-input OR gate with an INVERTER on one of the inputs.
The same reasoning used for these simple cases can be extended to more complex
circuits.

Suppose that we wanted to construct a circuit whose output is y = AC + BC +
ABC. This Boolean expression contains three terms (4C, BC, ABC), which are ORed
together. This tells us that a three-input OR gate is required with inputs that are
equal to AC, BC, and ABC. This is illustrated in Figure 3-17(a), where a three-input
OR gate is drawn with inputs labeled as AC, BC, and ABC.

Each OR gate input is an AND product term, which means that an AND gate
with appropriate inputs can be used to generate each of these terms. This is shown
in Figure 3-17(b), which is the final circuit diagram. Note the use of INVERTERs to
produce the 4 and C terms required in the expression.

This same general approach can always be followed, although we shall find
that there are some clever, more efficient techniques that can be employed. For
now, however, this straightforward method will be used to minimize the number of
new things that are to be learned.

Draw the circuit diagram to implement the expression x = (4 + B) (B + C).

Solution

This expression shows that the terms A + Band B + Care inputs to an AND gate,
and each of these two terms is generated from a separate OR gate. The result is
drawn in Figure 3-18.

A® ) A+B
B @ }x:(A+B)U§+C)

Cc o—

les]]

FIGURE 3-18 Example 3-7.

1. Draw the circuit diagram that implements the expression x = ABC(A + D)
using gates with no more than three inputs.

2. Draw the circuit diagram for the expression y = AC + BC + ABC.
3. Draw the circuit diagram for x = [D + (4 + BC) - E.

3-9 NOR GATES AND NAND GATES

Two other types of logic gates, NOR gates and NAND gates, are widely used in dig-
ital circuits. These gates actually combine the basic AND, OR, and NOT operations,
so it is a relatively simple matter to write their Boolean expressions.
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FIGURE 3-19 (a) NOR symbol;

) x=A+8B
(b) equivalent circuit; (¢) truth A
table. B \

Denotes
(a) @

inversion
A x=A+B
E:xs °
B

(b)

OR NOR

—t— —

A BllA+B||A+B
0 O 1
0 1 1 0
1 0 1 0
1 1 1 0

(c)

NOR Gate

The symbol for a two-input NOR gate is shown in Figure 3-19(a). It is the same as
the OR gate symbol except that it has a small circle on the output. The small circle
represents the inversion operation. Thus, the NOR gate operates like an OR gate fol-
lowed by an INVERTER, so that the circuits in Figure 3-19(a) and (b) are equivalent,
and the output expression for the NOR gate is x = 4 + B.

The truth table in Figure 3-19(c) shows that the NOR gate output is the exact in-
verse of the OR gate output for all possible input conditions. An OR gate output
goes HIGH when any input is HIGH, the NOR gate output goes LOW when any
input is HIGH. This same operation can be extended to NOR gates with more than
two inputs.

Determine the waveform at the output of a NOR gate for the input waveforms
shown in Figure 3-20.

EXAMPLE
3-8

1
A
0 [ -——I——_ A x=A+B
| — ' —— s
B
| |
0 T T
| 1 |
! [

FIGURE 3-20 Example 3-8.
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Solution

One way to determine the NOR output waveform is to find first the OR output
waveform and then invert it (change all 1s to Os, and vice versa). Another way
utilizes the fact that a NOR gate output will be HIGH only when all inputs are
LOW. Thus, you can examine the input waveforms, find those time intervals where
they are all LOW, and make the NOR output HIGH for those intervals. The NOR
output will be LOW for all other time intervals. The resultant output waveform is
shown in the figure.

"EXAY _ ' Determine the Boolean expression for a three-input NOR gate followed by an
54 INVERTER.

Solution

Refer to Figure 3-21, where the circuit diagram is shown. The expression at the
NOR output is (4 + B + C), which is then fed through an INVERTER to produce

x=A+ B+ O

@é"‘B‘*C {>OX=A+B+C=A+B+C
9

The presence of the double inversion signs indicates that the quantity (4 + B+ C)
has been inverted and then inverted again. It should be clear that this simply
results in the expression (4 + B + C) being unchanged. That is,

FIGURE 3-21 Example 3-9.

Ow >

x=(A+B+CO=A+B+C

Whenever two inversion bars are over the same variable or quantity, they cancel

each other out, as in the example above. However, in cases such as 4 + B the
inversion bars do not cancel. This is because the smaller inversion bars invert the
single variables A and B, while the wide bar inverts the quantity
(A+ B). Thus, A+ B # A + B. Similarly, AB # AB.

NAND Gate

The symbol for a two-input NAND gate is shown in Figure 3-22(a). It is the same as
the AND gate symbol except for the small circle on its output. Once again this small
circle denotes the inversion operation. Thus, the NAND operates like an AND gate
followed by an INVERTER, so that the circuits of Figures 3-22(a) and (b) are equiv-
alent, and the output expression for the NAND gate is x = AB.

The truth table in Figure 3-22(c) shows that the NAND gate output is the exact
inverse of the AND gate for all possible input conditions. The AND output goes
HIGH only when all inputs are HIGH, while the NAND output goes LOW only
when all inputs are HIGH. This same characteristic is true of NAND gates having
more than two inputs.
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A x = AB
AND NAND
B \ —r— ——
Denotes A B AB AB
inversion 0 0 0 1
(a) @ 0 1 0 1
1 0 0 1
. 1 1 1 0
A AB AB
(c)
B

(b}

FIGURE 3-22 (a) NAND symbol; (b) equivalent circuit; (c) truth table.

Determine the output waveform of a NAND gate having the inputs shown in
Figure 3-23.

—— )

FIGURE 3-23 Example 3-10.

Solution

One way is to draw first the output waveform for an AND gate and then invert it.
Another way utilizes the fact that a NAND output will be LOW only when all
inputs are HIGH. Thus, you can find those time intervals during which the inputs
are all HIGH, and make the NAND output LOW for those intervals. The output
will be HIGH at all other times.

Implement the logic circuit that has the expression x = AB- (C + D) using only
NOR and NAND gates.

Solution

The (C'+ D) term is the expression for the output of a NOR gate. This term is
ANDed with A and B, and the result is inverted; this, of course, is the NAND
operation. Thus, the circuit is implemented as shown in Figure 3-24. Note that the
NAND gate first ANDs the A, B, and (C + D) terms, and then it inverts the
complete result.




FIGURE 3-24 Examples 3-11 and c 1

3-12.

Review Questions
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C+D o0
0 ‘ 1 —
D 1 — x = AB(C + D)
B._I—}

Determine the output level in Figure 3-24 for A = B= C=1and D = 0.

Solution
In the first method we use the expression for x.

x = AB(C + D)

=1-1-Q+ 0
=1-1-Q)
=1-1-0
=0=1

In the second method we write down the input logic levels on the circuit diagram
(shown in color in Figure 3-24) and follow these levels through each gate to the
final output. The NOR gate has inputs of 1 and 0 to produce an output of 0 (an OR
would have produced an output of 1). The NAND gate thus has input levels of 0,
1, and 1 to produce an output of 1 (an AND would have produced an output of 0).

o

What is the only set of input conditions that will produce a HIGH output from
a three-input NOR gate?
2. Determine the output level in Figure 3-24 for A= B=1, C= D= 0.

3. Change the NOR gate of Figure 3-24 to a NAND gate, and change the NAND
to a NOR. What is the new expression for x?

3-10 BOOLEAN THEOREMS

We have seen how Boolean algebra can be used to help analyze a logic circuit and
express its operation mathematically. We will continue our study of Boolean alge-
bra by investigating the various Boolean theorems (rules) that can help us to sim-
plify logic expressions and logic circuits. The first group of theorems is given in Fig-
ure 3-25. In each theorem, x is a logic variable that can be either a 0 or a 1. Each
theorem is accompanied by a logic-circuit diagram that demonstrates its validity.

Theorem (1) states that if any variable is ANDed with 0, the result must be 0.
This is easy to remember because the AND operation is just like ordinary multipli-
cation, where we know that anything multiplied by 0 is 0. We also know that the
output of an AND gate will be 0 whenever any input is 0, regardless of the level on
the other input.

Theorem (2) is also obvious by comparison with ordinary multiplication.
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FIGURE 3-25 Single-variable X
theorems. (1) x+0=0 0

8) xex=x

(5) x+0=x

X
) x+1=1 1
1

(7) x+x=x

8 x+x=1 1

Theorem (3) can be proved by trying each case. If x = 0, then 0 - 0 = 0; if x =
1,then1-1=1.Thus, x - x= x.

Theorem (4) can be proved in the same manner. However, it can also be rea-
soned that at any time either x or its inverse x must be at the 0 level, and so their
AND product always must be 0.

Theorem (5) is straightforward, since 0 added to anything does not affect its
value, either in regular addition or in OR addition.

Theorem (6) states that if any variable is ORed with 1, the result will always be
1. We check this for both values of x 0 + 1 =1 and 1 + 1 = 1. Equivalently, we
can remember that an OR gate output will be 1 when any input is 1, regardless of
the value of the other input.

Theorem (7) can be proved by checking for both values of xx 0 + 0 = 0 and
1+1=1.

Theorem (8) can be proved similarly, or we can just reason that at any time ei-
ther x or X must be at the 1 level so that we are always ORing a 0 and a 1, which
always results in 1.
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Before introducing any more theorems, we should point out that when theo-
rems (1) through (8) are applied, the variable x may actually represent an expres-

sion containing more than one variable. For example, if we have AB(4B), we can
invoke theorem (4) by letting x = AB. Thus, we can say that AB(4B) = 0. The
same idea can be applied to the use of any of these theorems.

Multivariable Theorems
The theorems presented below involve more than one variable:

© x+y=y+x
1o X-y=y-x
an xt+t@+2=+W+z=x+y+z

a2 My = (xPz = xyz

(13 xXy+ 2 =xy+ xz

13 w+ 0@+ 2=w+ xy+ wz+ xz
14) x+ xy=x

15a) xtxy=x+y

A5 x+ay =x+y

Theorems (9) and (10) are called the commutative laws. These laws indicate
that the order in which we OR or AND two variables is unimportant; the result is the
same.

Theorems (11) and (12) are the associative laws, which state that we can group
the variables in an AND expression or OR expression any way we want.

Theorem (13) is the distributive law, which states that an expression can be ex-
panded by multiplying term by term just the same as in ordinary algebra. This the-
orem also indicates that we can factor an expression. That is, if we have a sum of
two (or more) terms, each of which contains a common variable, the common vari-
able can be factored out just as in ordinary algebra. For example, if we have the ex-

pression ABC + ABC, we can factor out the B variable:
ABC+ ABC = B(AC + AC)

As another example, consider the expression ABC + ABD. Here the two terms have
the variables 4 and B in common, and so A - B can be factored out of both terms.
That is,

ABC + ABD = AB(C + D)
Theorems (9) to (13) are easy to remember and use since they are identical to
those of ordinary algebra. Theorems (14) and (15), on the other hand, do not have

any counterparts in ordinary algebra. Each can be proved by trying all possible
cases for x and y. This is illustrated for theorem (14) as follows:

Casel. Forx=0,y=0,

|
o

0+0-0=
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Case2. Forx=0,y=1,

X+ xy=x
0+0-1=0
0+0=0
=0
Case3. Forx=1,y=0,
X+ xy=x
1+1-0=1
1+0=1
1=1
Case4. Forx=1y=1,
X+ xy=x
1+1-1=1
1+1=1
1=1

Theorem (14) can also be proved by factoring and using theorems (6) and (2)
as follows:

x+xy=x1+»
=x-1 [using theorem (6)]
=x [using theorem (2)]

All of these Boolean theorems can be useful in simplifying a logic expres-
sion—that is, in reducing the number of terms in the expression. When this is
done, the reduced expression will produce a circuit that is less complex than
the one that the original expression would have produced. A good portion of
the next chapter will be devoted to the process of circuit simplification. For
now, the following examples will serve to illustrate how the Boolean theorems
can be applied. Note: You can find all the Boolean theorems on the inside front
cover,

Simplify the expression y = ABD + ABD.

Solution
Factor out the common variables AB using theorem (13):

y= AB(D + D)
Using theorem (8), the term in parentheses is equivalent to 1. Thus,

-1
[using theorem (2)]

¥y

1=
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Simplify z = (4 + BX(A + B).

Solution
The expression can be expanded by multiplying out the terms [theorem (13)]:

z=A-A+A-B+B-A+ BB
Invoking theorem (4), the term 4 - 4 = 0. Also, B- B = B [theorem (3)]:
z2=0+A-B+B-A+ B=AB+ AB+ B
Factoring out the variable B [theorem (13)], we have
z=B(A+ A+ 1D

Finally, using theorems (2) and (6),

Simplify x = ACD + ABCD.

Solution
Factoring out the common variables CD, we have

x = CD(A + AB)
Utilizing theorem (15a), we can replace A + ABby A + B, so

x = CD(A + B)
= ACD + BCD

1. Use theorems (13) and (14) to simplify y = AC + ABC.
2. Use theorems (13) and (8) to simplify y = ABCD + ABCD.
3. Use theorems (13) and (15b) to simplify y = AD + ABD

3=11 DEMORGAN’S THEOREMS

Two of the most important theorems of Boolean algebra were contributed by a
great mathematician named DeMorgan. DeMorgan’s theorems are extremely use-
ful in simplifying expressions in which a product or sum of variables is inverted.
The two theorems are:
16) (x+y)=x-
an - p=x+

Il
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Theorem (16) says that when the OR sum of two variables is inverted, this is the
same as inverting each variable individually and then ANDing these inverted vari-
ables. Theorem (17) says that when the AND product of two variables is inverted,
this is the same as inverting each variable individually and then ORing them. Each
of DeMorgan’s theorems can readily be proven by checking for all possible combi-
nations of x and y. This will be left as an end-of-chapter exercise.

Although these theorems have been stated in terms of single variables x and y,
they are equally valid for situations where x and/or y are expressions that contain

more than one variable. For example, let’s apply them to the expression (4B + C)
as shown below:

(AB+C) =B - C

Note that we used theorem (16) and treated @ as x and Cas y. The result can be
further simplified since we have a product AB that is inverted. Using theorem (17),
the expression becomes

AB-C=(A+ B)-C

bN

Notice that we can replace B by B, so that we finally have
A4+ B - C=AC + BC

This final result contains only inverter signs that invert a single variable.

Simplify the expression z = (4 + C) - (B + D) to one having only single variables
inverted.

Solution
Using theorem (17), and treating (4 +C) as x and (B + D) as y, we have

z=(A+ O +(B+ D

We can think of this as breaking the large inverter sign down the middle and
changing the AND sign () to an OR sign (+). Now the term (4 + C) can be sim-
plified by applying theorem (16). Likewise, (B + D) can be simplified:

z=(Z+C)+(b’i5)

=(A-C)+B-D

Here we have broken the larger inverter signs down the middle and replaced the
(+) with a (-). Canceling out the double inversions, we have finally

z=AC + BD

Example 3-16 points out that when using DeMorgan’s theorems to reduce an
expression, we may break an inverter sign at any point in the expression and
change the operator sign at that point in the expression to its opposite (+ is
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changed to -, and vice versa). This procedure is continued until the expression is
reduced to one in which only single variables are inverted. Two more examples are
given below.

Example 1 Example 2

z=A+B-C o=+ BCO)-(D+ EF)
=4-(B-0O =@+ BO + (D + EF)
=4-B+ 0O =(4-BC) + (D - EF)
=4-(B+ CO) =[A4-(B+ O +I[D-(E + F)

= AB+ AC + DE + DF

DeMorgan’s theorems are easily extended to more than two variables. For ex-
ample, it can be proved that

&l Kl

x+y+z
x.y.z:

+ z

<
+ N

Here we see that the large inverter sign is broken at two points in the expression
and the operator sign changed to its opposite. This can be extended to any number
of variables. Again, realize that the variables can themselves be expressions rather
than single variables. Here is another example.

x=AB-CD - EF

= AB + CD + EF
AB + CD + EF

=

Il

Implications of DeMorgan’s Theorems

Let us examine theorems (16) and (17) from the standpoint of logic circuits. First,
consider theorem (16),

XxX+y=x-y

The left-hand side of the equation can be viewed as the output of a NOR gate
whose inputs are x and y. The right-hand side of the equation, on the other hand,
is the result of first inverting both x and y and then putting them through an AND
gate. These two representations are equivalent and are illustrated in Figure 3-26(a).

FIGURE 3-26 (a) Equivalent X
circuits implied by theorem (16); X x¥y — X [: _ XeV=X7y
(b) alternative symbol for the y — —DOL

NOR function.

(a)

x —) o
X*y=X+Yy
y —(
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FIGURE 3-27 (a) Equivalent X
circuits implied by theorem (17); X = X - X N X+y=%Xy
(b) alternative symbol for the y — — y

NAND function.

What this means is that an AND gate with INVERTERs on each of its inputs is equiv-
alent to a NOR gate. In fact, both representations are used to represent the NOR
function. When the AND gate with inverted inputs is used to represent the NOR
function, it is usually drawn as shown in Figure 3-26(b), where the small circles on
the inputs represent the inversion operation.
Now consider theorem (17),

x- y=x+Yy
The left side of the equation can be implemented by a NAND gate with inputs x and
». The right side can be implemented by first inverting inputs x and y and then
putting them through an OR gate. These two equivalent representations are shown
in Figure 3-27(a). The OR gate with INVERTERs on each of its inputs is equivalent
to the NAND gate. In fact, both representations are used to represent the NAND
function. When the OR gate with inverted inputs is used to represent the NAND
function, it is usually drawn as shown in Figure 3-27(b), where the circles again rep-
resent inversion.

Determine the output expression for the circuit of Figure 3-28 and simplify it using
DeMorgan’s theorems.

FIGURE 3-28 Example 3-17. A @ = - -
B o~ z=A*B-C=A+B+

Solution

The expression for zis z= ABC. Use DeMorgan’s theorem to break the large
inversion sign:

Oll
]
>
+
o]
+
O

(@]]

Cancel the double inversions over C to obtain

o]

z=A+ B+ C
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1. Use DeMorgan’s theorems to convert the expression z = (4 + B) - C to one
that has only single-variable inversions.

2. Repeat question 1 for the expression y = RST + Q.

3. Implement a circuit having output expression z = ABCusing only a NOR gate
and an INVERTER.

4. Use DeMorgan’s theorems to convert y = A + B + CD to an expression con-
taining only single-variable inversions.

3=12 UNIVERSALITY OF NAND GATES AND NOR GATES

All Boolean expressions consist of various combinations of the basic operations of
OR, AND, and INVERT. Therefore, any expression can be implemented using com-
binations of OR gates, AND gates, and INVERTERs. It is possible, however, to im-
plement any logic expression using only NAND gates and no other type of gate.
This is because NAND gates, in the proper combination, can be used to perform
each of the Boolean operations OR, AND, and INVERT. This is demonstrated in Fig-
ure 3-29.

First, in Figure 3-29(a) we have a two-input NAND gate whose inputs are pur-
posely connected together so that the variable A is applied to both. In this configu-
ration, the NAND simply acts as INVERTER, since its output is x = A- A = A.

In Figure 3-29(b) we have two NAND gates connected so that the AND opera-
tion is performed. NAND gate 2 is used as an INVERTER to change 4B to AB = AB,
which is the desired AND function.

The OR operation can be implemented using NAND gates connected as shown
in Figure 3-29(c). Here NAND gates 1 and 2 are used as INVERTERs to invert the in-

puts, so that the final output is x = A - B, which can be simplified to x = 4 + Bus-
ing DeMorgan’s theorem.

|
:

(a) INVERTER

AB x = AB A @———I
2 —
B &—

(b}

T

>
W i>|
w
x
I
|
w|
1
>
+
(03]
W >
’ >
Z
lw)

FIGURE 3-29 NAND gates can be used to implement any Boolean function.
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A x=A+A=A
—> A.——{>O-——¢

INVERTER

FIGURE 3-30 NOR gates can be used to implement any Boolean operation.

In a similar manner, it can be shown that NOR gates can be arranged to imple-
ment any of the Boolean operations. This is illustrated in Figure 3-30. Part (a) shows
that a NOR gate with its inputs connected together behaves as an INVERTER, since
the outputisx = A+ 4 = A.

In Figure 3-30(b) two NOR gates are arranged so that the OR operation is per-
formed. NOR gate 2 is used as an INVERTER to change A+ Bto A+ B = A + B,
which is the desired OR function.

The AND operation can be implemented with NOR gates as shown in Figure
3-30(c). Here NOR gates 1 and 2 are used as INVERTERs to invert the inputs, so that
the final output is x = 4 + B, which can be simplified to x = A - B by use of De-
Morgan’s theorem.

Since any of the Boolean operations can be implemented using only NAND
gates, any logic circuit can be constructed using only NAND gates. The same is true
for NOR gates. This characteristic of NAND and NOR gates can be very useful in
logic-circuit design, as the example on p. 85 illustrates.
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In a certain manufacturing process, a conveyor belt will shut down whenever
specific conditions occur. These conditions are monitored and reflected by the
states of four logic signals as follows: signal 4 will be HIGH whenever the
conveyor belt speed is too fast; signal B will be HIGH whenever the collection bin
at the end of the belt is full; signal C will be HIGH when the belt tension is too
high; signal D will be HIGH when the manual override is off.

A logic circuit is needed to generate a signal x that will go HIGH whenever
conditions A and B exist simultaneously or whenever conditions C and D exist
simultaneously. Clearly, the logic expression for x will be x = AB + CD. The
circuit is to be implemented with a minimum number of ICs. The TTL integrated
circuits shown in Figure 3-31 are available. Each IC is a quad, which means that it
contains four identical gates on one chip.

=]
5l
5]
=
3]
<]
o]

FIGURE 3-31 ICs available for
Example 3-18.
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Solution

The straightforward method for implementing the given expression uses two AND
gates and an OR gate as shown in Figure 3-32(a). This implementation uses two
gates from the 74LS08 IC and a single gate from the 74LS32 IC. The numbers in
parentheses at each input and output are the pin numbers of the respective IC.

- These are always shown on any logic-circuit wiring diagram. For our purposes,
most logic diagrams will not show pin numbers unless they are needed in the
description of circuit operation.

Another implementation can be accomplished by taking the circuit of Figure
3-32(a) and replacing each AND gate and OR gate by its equivalent NAND gate
implementation from Figure 3-29. The result is shown in Figure 3-32(b).

At first glance this new circuit looks as if it requires seven NAND gates.
However, NAND gates 3 and 5 are connected as INVERTERs in series and can be
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FIGURE 3-32 Possible (1) 741508
implementations for Example A o0—] 3)
3-18. (2) ‘
B &— 1) 741532
(a) (2) ) x=AB + CD
(4) 741508
‘ (6)

(5)

AND

A

|
A @—
PRI
B &—
C o—
D &—
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N J

(b}

v
AND OR

After eliminating
double inversions
(1) 74L.S00
A — (3)
(2) ‘
B &—— ) 741.S00

(10)

(c)

(4) 74500
Co— (6)
(5)
D —
eliminated from the circuit since they perform a double inversion of the signal out
of NAND gate 1. Similarly, NAND gates 4 and 6 can be eliminated. The final
circuit, after eliminating the double INVERTERs, is drawn in Figure 3-32(c).
This final circuit is more efficient than the one in Figure 3-32(a) because it

uses three two-input NAND gates that can be implemented from one IC, the
" 74LS00.
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LRI OIGHITTES 1. How many different ways do we now have to implement the inversion oper-

ation in a logic circuit?

2. Implement the expression x = (4 + B)(C + D) using OR and AND gates. Then
implement the expression using only NOR gates by converting each OR and
AND gate to its NOR implementation from Figure 3-30. Which circuit is more
efficient?

3. Write the output expression for the circuit of Figure 3-32(c), and use DeMor-
gan’s theorems to show that it is equivalent to the expression for the circuit of
Figure 3-32(a).

3-13 ALTERNATE LOGIC-GATE REPRESENTATIONS

We have introduced the five basic logic gates (AND, OR, INVERTER, NAND, and
NOR) and the standard symbols used to represent them on logic-circuit diagrams.
Although you may find that some circuit diagrams still use these standard symbols
exclusively, it has become increasingly more common to find circuit diagrams that
utilize alternate logic symbols in addition to the standard symbols.

Before discussing the reasons for using an alternate symbol for a logic gate, we will
present the alternate symbols for each gate and show that they are equivalent to the
standard symbols. Refer to Figure 3-33; the left side of the illustration shows the standard

A o—

B —

>
=z
o
>
@©
@ >
pdl
+
@I
It
>
o

A A+B Ae—O)
B

A O— AB A
B &— B

=A+B

f
I

>
+
@i
I
%l
(o8]

il

@ >
>
+
w
>

>
wl
1
>
+
w

B &—

|5 INV A®

¥

FIGURE 3-33 Standard and alternate symbols for various logic gates and inverter.
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symbol for each logic gate, and the right side shows the alternate symbol. The alternate
symbol for each gate is obtained from the standard symbol by doing the following:

1. Invert each input and output of the standard symbol. This is done by adding
bubbles (small circles) on input and output lines that do not have bubbles and
by removing bubbles that are already there.

2. Change the operation symbol from AND to OR, or from OR to AND. (In the spe-
cial case of the INVERTER, the operation symbol is not changed.)

For example, the standard NAND symbol is an AND symbol with a bubble on
its output. Following the steps outlined above, remove the bubble from the output,
and add a bubble to each input. Then change the AND symbol to an OR symbol.
The result is an OR symbol with bubbles on its inputs.

We can easily prove that this alternate symbol is equivalent to the standard sym-
bol by using DeMorgan’s theorems and recalling that the bubble represents an in-
version operation. The output expression from the standard NAND symbol is AB =
A + B, which is the same as the output expression for the alternate symbol. This
same procedure can be followed for each pair of symbols in Figure 3-33.

Several points should be stressed regarding the logic symbol equivalences:

1. The equivalences can be extended to gates with any number of inputs.
2. None of the standard symbols have bubbles on their inputs, and all the alternate
symbols do.

3. The standard and alternate symbols for each gate represent the same physical
circuit; there is no difference in the circuils represented by the two symbols.

4. NAND and NOR gates are inverting gates, and so both the standard and the al-
ternate symbols for each will have a bubble on either the input or the output.
AND and OR gates are noninverting gates, and so the alternate symbols for each
will have bubbles on both inputs and output.

Logic-Symbol Interpretation

Each of the logic-gate symbols of Figure 3-33 provides a unique interpretation of
how the gate operates. Before we can demonstrate these interpretations, we must
first establish the concept of active logic levels.

When an input or output line on a logic circuit symbol has no bubble on it, that
line is said to be active-HIGH. When an input or output line does have a bubble on
it, that line is said to be active-LOW. The presence or absence of a bubble, then, de-
termines the active-HIGH/active-LOW status of a circuit’s inputs and output, and is
used to interpret the circuit operation.

To illustrate, Figure 3-34(a) shows the standard symbol for a NAND gate. The
standard symbol has a bubble on its output and no bubbles on its inputs. Thus, it
has an active-LOW output and active-HIGH inputs. The logic operation represented
by this symbol can therefore be interpreted as follows:

The output goes LOW only when all of the inputs are HIGH.

Note that this says that the output will go to its active state only when all of the in-
puts are in their active states. The word “all” is used because of the AND symbol.
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the two NAND gate symbols.
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AB Output goes LOW only
B when afl inputs are HIGH.
; LOW state is
active-HIGH the active state.

Qutput is HIGH when
any.input is LOW.

HIGH state is the

active-LOW active state.

(b)

The alternate symbol for a NAND gate shown in Figure 3-34(b) has an active-
HIGH output and active-LOW inputs, and so its operation can be stated as follows:

The output goes HIGH when any input is LOW.

This says that the output will be in its active state whenever any of the inputs is in
its active state. The word “any” is used because of the OR symbol.

With a little thought, it can be seen that the two interpretations for the NAND
symbols in Figure 3-34 are different ways of saying the same thing.

Summary

At this point you are probably wondering why there is a need to have two different
symbols and interpretations for each logic gate. We hope the reasons will become
clear after reading the next section. For now, let us summarize the important points
concerning the logic-gate representations.

1. To obtain the alternate symbol for a logic gate, take the standard symbol and
change its operation symbol (OR to AND, or AND to OR), and change the bub-
bles on both inputs and output (i.e., delete bubbles that are present, and add
bubbles where there are none).

2. To interpret the logic-gate operation, first note which logic state, 0 or 1, is the ac-
tive state for the inputs and which is the active state for the output. Then realize
that the output’s active state is produced by having a// of the inputs in their ac-
tive state (if an AND symbol is used) or by having any of the inputs in its active
state (if an OR symbol is used).

Give the interpretation of the two OR gate symbols.

~ Solution

The results are shown in Figure 3-35. Note that the word “any” is used when the
operation symbol is an OR symbol and the word “all” is used when it includes an
AND symbol.
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A+B Output goes HIGH when
B any input is HIGH.
HIGH state is
active-HIGH active state.
(a)
A A+B=A+B Output goes LOW only
B when all inputs are LOW.
; ‘ LOW state is
active-LOW active state.
(b)

1. Write the interpretation of the operation performed by the standard NOR gate
symbol in Figure 3-33.

2. Repeat question 1 for the alternate NOR gate symbol.

3. Repeat question 1 for the alternate AND gate symbol.

4. Repeat question 1 for the standard AND gate symbol.

3-14 WHICH GATE REPRESENTATION TO USE

Some logic-circuit designers and some textbooks use only the standard logic-gate
symbols in their circuit schematics. While this practice is not incorrect, it does noth-
ing to make the circuit operation easier to follow. Proper use of the alternate gate
symbols in the circuit diagram can make the circuit operation much clearer. This can
be illustrated by considering the example shown in Figure 3-36.

The circuit in Figure 3-36(a) contains three NAND gates connected to produce
an output Z that depends on inputs 4, B, C, and D. The circuit diagram uses the
standard symbol for each of the NAND gates. While this diagram is logically correct,
it does not facilitate an understanding of how the circuit functions. The circuit rep-
resentations given in Figures 3-36(b) and (c), however, can be analyzed more easily
to determine the circuit operation.

The representation of Figure 3-36(b) is obtained from the original circuit dia-
gram by replacing NAND gate 3 with its alternate symbol. In this diagram, output Z
is taken from a NAND gate symbol that has an active-HIGH output. Thus, we can
say that Z will go HIGH when either X or Y is LOW. Now, since X and Y each ap-
pear at the output of NAND symbols having active-LOW outputs, we can say that X
will go LOW only if A = B =1, and Y will go LOW only if C = D = 1. Putting this
all together, we can describe the circuit operation as follows:

Output Z will go HIGH whenever eitherd = B = lorC = D =1
(or both).

This description can be translated to truth-table form by setting Z =1 for those
cases where A = B =1 and for those cases where C = D = 1. For all other cases,
Z is made a 0. The resultant truth table is shown in Figure 3-36(d).
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FIGURE 3-36 (a) Original circuit using standard NAND symbols; (b) equivalent
representation where output Z is active-HIGH; (c¢) equivalent representation where output
Z is active-LOW,; (d) truth table.

The representation of Figure 3-36(c) is obtained from the original circuit dia-
gram by replacing NAND gates 1 and 2 by their alternate symbols. In this equivalent
representation the Z output is taken from a NAND gate that has an active-LOW out-
put. Thus, we can say that Z will go LOW only when X = Y = 1. Since X and Yare
active-HIGH outputs, we can say that X will be HIGH when either 4 or B is LOW,
and Y will be HIGH when either C or D is LOW. Putting this all together, we can de-
scribe the circuit operation as follows:

Output Z will go LOW only when A or B is LOW and C or D is LOW.

This description can be translated to truth-table form by making Z = 0 for all
cases where at least one of the 4 or B inputs is LOW at the same time that at
least one of the C or D inputs is LOW. For all other cases, Z is made a 1. The
resultant truth table is the same as that obtained for the circuit diagram of Figure

3-36(b).
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Which Circuit Diagram Should Be Used?

The answer to this question depends on the particular function being performed by
the circuit output. If the circuit is being used to cause some action (e.g., turn on an
LED or activate another logic circuit) when output Z goes to the 1 state, then we say
that Z is to be active-HIGH, and the circuit diagram of Figure 3-36(b) should be
used. On the other hand, if the circuit is being used to cause some action when Z
goes to the O state, then Z is to be active-LOW, and the diagram of Figure 3-36(c)
should be used.

Of course, there will be situations where both output states are used to produce
different actions and either one can be considered to be the active state. For these
cases, either circuit representation can be used.

Bubble Placement

Refer to the circuit representation of Figure 3-36(b) and note that the symbols for
NAND gates 1 and 2 were chosen to have active-LOW outputs to match the active-
LOW inputs of NAND gate 3. Refer to the circuit representation of Figure 3-36(c)
and note that the symbols for NAND gates 1 and 2 were chosen to have active-
HIGH outputs to match the active-HIGH inputs of NAND gate 3. This leads to the
following general rule for preparing logic-circuit schematics:

Whenever possible, choose gate symbols so that bubble outputs are
connected to bubble inputs, and nonbubble outputs to nonbubble in-
puts.

The following examples will show how this rule can be applied.

The logic circuit in Figure 3-37(a) is being used to activate an alarm when its
output Z goes HIGH. Modify the circuit diagram so that it more effectively
represents the circuit operation.

A A —O)
B 2 =1 ALARM | B &—O) 2 —-1 ALARM |
D_

C o—] C o—
1
D"'# D &— )
(b

(a)

FIGURE 3-37 Example 3-20.

Solution

Since Z = 1 will activate the alarm, Z is to be active-HIGH. Thus, the AND gate 2
symbol does not have to be changed. The NOR gate symbol should be changed to
the alternate symbol with a nonbubble (active-HIGH) output to match the
nonbubble input of AND gate 2 as shown in Figure 3-37(b). Note that the circuit
now has nonbubble outputs connected to the nonbubble inputs of gate 2.
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When the output of the logic circuit in Figure 3-38(a) goes LOW, it activates
another logic circuit. Modify the circuit diagram to represent the circuit operation
more effectively.

A A e—()
1
B B —O
C &— V4 C n® Z
2
De— D ~e

SR o

(@) {b)

FIGURE 3-38 Example 3-21.

Solution

Since Z is to be active-LOW, the symbol for OR gate 2 must be changed to its al-
ternate symbol as shown in Figure 3-38(b). The new OR gate 2 symbol has bubble
inputs, and so the AND gate and OR gate 1 symbols must be changed to bubbled
outputs as shown in Figure 3-38(b). The INVERTER already has a bubble output.
Now the circuit has all bubble outputs connected to bubble inputs of gate 2.

Analyzing Circuits

When a logic-circuit schematic is drawn using the rules we followed in these exam-
ples, it is much easier for an engineer or technician (or student) to follow the signal
flow through the circuit and to determine the input conditions that are needed to ac-
tivate the output. This will be illustrated in the following examples—which, inciden-
tally, use circuit diagrams taken from the logic schematics of an actual microcomputer.

The logic circuit in Figure 3-39 generates an output, MEM, that is used to activate
the memory ICs in a particular microcomputer. Determine the input conditions
necessary to activate MEM.

Solution
One way to do this would be to write the expression for MEM in terms of the
inputs RD, ROM-A, ROM-B, and RAM, and to evaluate it for the 16 possible
combinations of these inputs. While this method would work, it would require a
lot more work than is necessary.

A more efficient method is to interpret the circuit diagram using the ideas we
have been developing in the last two sections. These are the steps:

1. MEMis active-LOW, and it will go LOW only when X and Y are HIGH.
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FIGURE 3-39 Example 3-22. Gl\ X

RD @ 4
MEM

ROM-A

ROM-B

RAM @- 4(*
\

X will be HIGH only when RD = 0.

Y will be HIGH when either Wor Vis HIGH.

Vwill be HIGH when RAM = 0.

W will be HIGH when either ROM-A or ROM-B = 0.

Putting this all together, MEM will go LOW only when RD = 0 and at least one
of the three inputs ROM-A, ROM-B, or RAM is LOW.

Ok BN

The logic circuit in Figure 3-40 is used to control the drive spindle motor for a
floppy disk drive when the microcomputer is sending data to or receiving data
from the disk. The circuit will turn on the motor when DRIVE = 1. Determine the
input conditions necessary to turn on the motor.

FIGURE 3-40 Example 3-23.
Note: All gates are CMOS

74HC30 Y
Ay &— 74HC32
4HCO02
Ag 74HCO DRIVE

—

(@)

[ a—

— pd
@ <

Solution

Once again we will interpret the diagram in a step-by-step fashion:

1. DRIVE is active-HIGH, and it will go HIGH only when X = ¥ = 0.
2. Xwill be LOW when either IV or OUT is HIGH.
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3. Ywill be LOW only when W= 0 and 4, = 0.
4. Wwill be LOW only when 4, through A4, are all HIGH.

5. Putting this all together, DRIVE will be HIGH when 4; = 4, = A3 = A4 = As =
As = A, = 1 and A, = 0, and either IN or OUT or both are 1.

Note the strange symbol for the eight-input CMOS NAND gate (74HC30); also note
that signal A4, is connected to two of the NAND inputs.

Asserted Levels

We have been describing logic signals as being active-LOW or active-HIGH. For ex-
ample, the output MEM in Figure 3-39 is active-LOW, and the output DRIVE in Fig-
ure 3-40 is active-HIGH, since these are the output states that cause something to
happen. Similarly, Figure 3-40 has active-HIGH inputs 4; to 4, and active-LOW in-
put A,.

When a logic signal is in its active state, it can be said to be asserted. For ex-
ample, when we say that input 4, is asserted, we are saying that it is in its active-
LOW state. When a logic signal is not in its active state, it is said to be unasserted.
Thus, when we say that DRIVE is unasserted, we mean that it is in its inactive state
(LOW).

Clearly, the terms “asserted” and “unasserted” are synonymous with “active”
and “inactive,” respectively:

asserted = active
unasserted = inactive

Both sets of terms are in common use in the digital field, so you should recognize
both ways of describing a logic signal’s active state.

Labeling Active-LOW Logic Signals

It has become common practice to use an overbar to label active-LOW signals. The
overbar serves as another indication that the signal is active-LOW; of course, the ab-
sence of an overbar means that the signal is active-HIGH.

To illustrate, all of the signals in Figure 3-39 are active-LOW, and so they can be
labeled as follows:

RD, ROM-A, ROM-B, RAM, MEM

Remember, the overbar is simply a way to emphasize that these are active-LOW sig-
nals. We will employ this convention for labeling logic signals whenever appropriate.

Labeling Bistate Signals

Very often, an output signal will have two active states; that is, it will have one im-
portant function in the HIGH state and another in the LOW state. It is customary to
label such signals so that both active states are apparent. A common example is the
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read/write signal, RD/WR, which is interpreted as follows: when this signal is
HIGH, the read operation (RD) is performed; when it is LOW, the write operation
(WR) is performed.

¥
vl TT
e el S e T

LR TR O

1. Use the method of Examples 3-22 and 3-23 to determine the input conditions
needed to activate the output of the circuit in Figure 3-37(b).

. Repeat question 1 for the circuit of Figure 3-38(b).
How many NAND gates are in Figure 3-39?
. How many NOR gates are in Figure 3-40?

. What will be the output level in Figure 3-38(b) when all of the inputs are as-
serted?

. What inputs are required to assert the alarm output in Figure 3-37(b)?
7. Which of the following signals is active-LOW: RD, W, R/ W ?

¥ I N TUN)
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3-13 IEEE/ANSI STANDARD LOGIC SYMBOLS

The logic symbols we have used so far in this chapter are the traditional standard
symbols used in the digital industry for many, many years. These traditional symbols
use a distinctive shape for each logic gate. A newer standard for logic symbols was
developed in 1984; it is called the IEEE/ANSI Standard 91-1984 for logic symbols.
The IEEE/ANSI standard uses rectangular symbols to represent all logic gates and
circuits. A special dependency notation inside the rectangular symbol indicates how
the device outputs depend on the device inputs. Figure 3-41 shows the IEEE/ANSI
symbols alongside the traditional symbols for the basic logic gates. Note the follow-
ing points:

1. The rectangular symbols use a small right triangle ([\) in place of the small bub-
ble of the traditional symbols to indicate the inversion of the logic level. The
presence or absence of the triangle also signifies whether an input or output is
active-LOW or active-HIGH.

2. A special notation inside each rectangular symbol describes the logic relation be-
tween inputs and output. The “1” inside the INVERTER symbol denotes a device
with only one input; the triangle on the output indicates that the output will go
to its active-LOW state when that one input is in its active-HIGH state. The “&”
inside the AND symbol means that the output will go to its active-HIGH state
when all of the inputs are in their active-HIGH state. The “=” inside the OR gate
means that the output will go to its active state (HIGH) whenever one or more in-
puts are in their active state (HIGH).

3. The rectangular symbols for the NAND and the NOR are the same as those for
the AND and the OR, respectively, with the addition of the small inversion trian-
gle on the output.



|

FIGURE 3-41 Standard logic NOT

symbols: (a) traditional;
(b) IEEE/ANSI.

Review Questions
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(a) (b)

Traditional or IEEE/ANSI?

The IEEE/ANSI standard has not yet been widely accepted for use in the digital
field, although you will run across it in scme newer equipment schematics. Most
digital IC data books include both the traditional and IEEE/ANSI symbols, and it is
possible that the newer standard might eventually become more widely used. So
even though we will employ the traditional symbols in most of the circuit diagrams
throughout this book, we will present and describe the IEEE/ANSI symbol for each
new logic device as it is introduced. In this way, you will become familiar with the
new standard.

1. Draw all of the basic logic gates using both the traditional symbols and the
IEEE/ANSI symbols.

2. Draw the IEEE/ANSI symbol for a NOR gate with active-HIGH output.
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SUMMARY

LM

. Boolean algebra is a mathematical tool used in the analysis and design of digital

circuits.

2. The basic Boolean operations are the OR, AND, and NOT operations.
. An OR gate produces a HIGH output when any input is HHGH. An AND gate pro-

duces a HIGH output only when all inputs are HIGH. A NOT circuit INVERTER)
produces an output that is the opposite logic level as the input.

. A NOR gate is the same as an OR gate with its output connected to an IN-

VERTER. A NAND gate is the same as an AND gate with its output connected to
an INVERTER.

. Boolean theorems and rules can be used to simplify the expression of a logic cir-

cuit and can lead to a simpler way of implementing the circuit.

. NAND gates can be used to implement any of the basic Boolean operations.

NOR gates can be used likewise.

. Either standard or alternate symbols can be used for each logic gate depending

on whether the output is to be active-HIGH or active-LOW.

. The IEEE/ANSI standard for logic symbols uses rectangular symbols for each

logic device with special notations inside the rectangles to show how the outputs
depend on the inputs.

IMPORTANT TERMS*

PROBLEMS

Boolean algebra NOT operation alternate logic symbols
logic level inversion-complementation active logic levels
truth table NOT circuit (INVERTER) active-HIGH

OR operation NOR gate active-LOW

OR gate NAND gate asserted

AND operation Boolean theorems unasserted

AND gate DeMorgan’s theorems IEEE/ANSI symbols

The blue letters preceding some of the problems are used to indicate the nature or
type of problem as follows:

basic problem C challenging problem
troubleshooting problem
design or circuit-modification problem

2o AR

new concept or technique not covered in text

* These terms can be found in boldface type in the chapter and are defined in the Glossary at the end

of the book.
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SECTION 3-3

3-1.

Draw the output waveform for the OR gate of Figure 3-42.

FIGURE 3-42
| ]
i [ | A
| [ I
[ ! | C ) >
C
3-2. Suppose that the 4 input in Figure 3-42 is unintentionally shorted to ground

3-3.

34.

3-5.

(i.e., A = 0). Draw the resulting output waveform.

Suppose that the A4 input in Figure 3-42 is unintentionally shorted to the +5V

supply line (i.e., A = 1). Draw the resulting output waveform.

Read the statements below concerning an OR gate. At first they may ap-

pear to be valid, but after some thought you should realize that neither

one is always true. Prove this by showing a specific example to refute each

statement.

(@ If the output waveform from an OR gate is the same as the waveform at
one of its inputs, the other input is being held permanently LOW.

(b) If the output waveform from an OR gate is always HIGH, one of its inputs
is being held permanently HIGH.

How many different sets of input conditions will produce a HIGH output from

a five-input OR gate?

SECTION 3-4

36.

3-7.

3-8.

3-9.

3-10.

Change the OR gate in Figure 3-42 to an AND gate.

(2) Draw the output waveform.

(b) Draw the output waveform if the A input is permanently shorted to
ground.

(©) Draw the output waveform if 4 is permanently shorted to +5 V.

Refer to Figure 3-4. Modify the circuit so that the alarm is to be activated only

when the pressure and the temperature exceed their maximum limits at the

same time.

Change the OR gate in Figure 3-6 to an AND gate and draw the output wave-

form.

Suppose that you have an unknown two-input gate that is either an OR gate

or an AND gate. What combination of input levels should you apply to the

gate’s inputs to determine which type of gate it is?

True or false: No matter how many inputs it has, an AND gate will produce a

HIGH output for only one combination of input levels.

SECTIONS 3-5 TO 3-7
3-11. Apply the A waveform from Figure 3-23 to the input of an INVERTER. Draw

the output waveform. Repeat for waveform B.
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B 3-12. (a) Write the Boolean expression for output x in Figure 3-43(a). Determine
the value of x for all possible input conditions, and list the values in a
truth table.

(b) Repeat for the circuit in Figure 3-43(b).

FIGURE 343 A

: D

B

-
A =
D -

3-13. Determine the complete truth table for the circuit of Figure 3-15(b) by finding
the logic levels present at each gate output for each of the 32 possible input
combinations.

3-14. Change each OR to an AND, and each AND to an OR, in Figure 3-15(b). Then
write the expression for the output.

3-15. Determine the complete truth table for the circuit of Figure 3-16 by finding the
logic levels present at each gate output for each of the 16 possible combina-
tions of input levels.

SECTION 3-8

B 3-16. For each of the following expressions, construct the corresponding logic cir-
cuit, using AND and OR gates and INVERTERs.
(@ x= AB(C+ D)
() z=(4+ B+ CDE) + BCD
© y=M+ N+ PQ
d x= W+ PQ
© z=MNP+N)
® x=UA+BA + B



Problems @ 101

SECTION 3-9
B 3-17. (@ Apply the input waveforms of Figure 3-44 to a NOR gate, and draw the
output waveform. '
(b) Repeat with C held permanently LOW.
() Repeat with C held HIGH.

FIGURE 3-44 1
Il I | | |
A I

B 3-18. Repeat Problem 3-17 for a NAND gate.

C 3-19. Write the expression for the output of Figure 3-45, and use it to determine the
complete truth table. Then apply the waveforms of Figure 3-44 to the circuit
inputs, and draw the resulting output waveform.

FIGURE 345  p

B D

3-20. Determine the truth table for the circuit of Figure 3-24.
3-21. Modify the circuits that were constructed in Problem 3-16 so that NAND gates
and NOR gates are used wherever appropriate.

SECTION 3-10
B 3-22. DRILL QUESTION
Complete each expression.

@A+1=__ ® D 1=

®Aa-A=_ ® D+0=
©B-B=____ th) ¢+ C=
@»>c+c=_____ i G+ GF=
@ x-0= G y+twy=

3-23. Prove theorems 15a and 15b by trying all possible cases.
C 3-24. (a) Simplify the following expression using theorems (13b), (3), and (4):

x=(M+ NXM + PN + P)
(b) Simplify the following expression using theorems (13a), (8), and (6):

z= ABC + ABC + BCD
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SECTIONS 3-11 AND 3-12
3-25. Prove DeMorgan’s theorems by trying all possible cases.
B 3-26. Simplify each of the following expressions using DeMorgan’s theorems.

@ ABC @ A+ B ® AB+ C)D
®) 4+ BC (© AB @ M+ NHM + N)
(c) ABCD ® A+ C+D (i ABCD
3-27. Use DeMorgan’s theorems to simplify the expression for the output of Figure
3-45.

C 3-28. Convert the circuit of Figure 3-43(b) to one using only NAND gates. Then
write the output expression for the new circuit, simplify it using DeMorgan’s
theorems, and compare it with the expression for the original circuit.

3-29. Convert the circuit of Figure 3-43(a) to one using only NOR gates. Then write
the expression for the new circuit, simplify it using DeMorgan’s theorems, and
compare it with the expression for the original circuit.

B 3-30. Show how a two-input NAND gate can be constructed from two-input NOR
gates.

B 3-31. Show how a two-input NOR gate can be constructed from two-input NAND
gates.

3-32. A jet aircraft employs a system for monitoring the rpm, pressure, and temper-
ature values of its engines using sensors that operate as follows:

RPM sensor output = 0 only when speed < 4800 rpm
P sensor output = 0 only when pressure < 220 psi
T sensor output = 0 only when temperature < 200°F

Figure 3-46 shows the logic circuit that controls a cockpit warning light for
certain combinations of engine conditions. Assume that a HIGH at output W
activates the warning light.

(@) Determine what engine conditions will give a warning to the pilot.

(b) Change this circuit to one using all NAND gates.

FIGURE 3-46 : : T \
sensor o

2

Pressure
SEensor

Warning
light

(" RPM
sSensor

SECTIONS 3-13 AND 3-14
B 3-33. Draw the standard representations for each of the basic logic gates. Then

draw the alternate representations.

3-34. For each statement below, draw the appropriate logic-gate symbol—standard
or alternate—for the given operation.
(2) A HIGH output occurs only when all three inputs are LOW.
(b) A LOW output occurs when any of the four inputs is LOW.
(©) A LOW output occurs only when all eight inputs are HIGH.
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3-35.

3-36.

3-37.

3-38.

FIGURE 347 [> ‘

3-39.

The circuit of Figure 3-45 is supposed to be a simple digital combination lock
whose output will generate an active-LOW UNLOCK signal for only one com-
bination of inputs.

(@) Modify the circuit diagram so that it represents more effectively the circuit
operation.

(b) Use the new circuit diagram to determine the input combination that will
activate the output. Do this by working back from the output using the in-
formation given by the gate symbols as was done in Examples 3-22 and
3-23. Compare the results with the truth table obtained in Problem 3-19.

(@) Determine the input conditions needed to activate output Z in Figure 3-37(b).
Do this by working back from the output as was done in Examples 3-22
and 3-23.

(b) Assume that it is the LOW state of Z that is to activate the alarm. Change
the circuit diagram to reflect this, and then use the revised diagram to de-
termine the input conditions needed to activate the alarm.

Modify the circuit of Figure 3-40 so that A; = 0 is needed to produce DRIVE =

1 instead of 4, = 1.

Determine the input conditions needed to cause the output in Figure 3-47 to

go to its active state.

B ‘ X

: >

Use the results of Problem 3-38 to obtain the complete truth table for the cir-
cuit of Figure 3-47.

3-40. What is the asserted state for the output of Figure 3-47? For the output of Fig-

3-41.

ure 3-36(c)?

Figure 3-48 shows an application of logic gates that simulates a two-way
switch like the ones used in our homes to turn a light on or off from two dif-
ferent switches. Here the light is an LED which will be ON (conducting) when
the NOR gate output is LOW. Note that this output is labeled LIGHT to indi-
cate that it is active-LOW. Determine the input conditions needed to turn on
the LED. Then verify that the circuit operates as a two-way switch using
switches A and B. In Chapter 4 you will learn how to design circuits like this
one to produce a given relationship between inputs and outputs.

SECTION 3-15

3-42.

Redraw the circuits of (a) Figure 3-47 and (b) Figure 3-48 using the IEEE/ANSI
symbols.
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FIGURE 3-48 +5V

o

LIGHT
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MICROCOMPUTER APPLICATION
C 3-43. Refer to Figure 3-40 in Example 3-23. Inputs 4; through A4, are address inputs
that are supplied to this circuit from outputs of the microprocessor chip in a
microcomputer. The eight-bit address code A4, to 4, selects which device the
microprocessor wants to activate. In Example 3-23, the required address code
to activate the disk drive was A4, through 4, = 11111110, = FE;.
Modify the circuit so that the microprocessor must supply an address
code of 4A,4 to activate the disk drive.

CHALLENGING EXERCISES
C 344. Show how x = ABC can be implemented with one two-input NOR and one
two-input NAND gate.
C 3-45. Implement y = ABCD using only two-input NAND gates.

ANSWERS TO SECTION REVIEW QUESTIONS

SECTION 3-2 SECTION 3-8

1. x=1 2.x=0 3. 32 1. See Figure 3-15(a). 2. See Figure 3-17(b).
3. See Figure 3-15(b).

SECTION 3-3

1. Allinputs LOW 2. x=A+ B+ C+ D+ E+ F  SECTION 3-9

3. Constant HIGH 1. All inputs LOW 2.x=0
3. x=A+ B+ CD

SECTION 3-4

1. All five inputs =1 2. A LOW input will keep the SECTION 3-10

output LOW.} 3. False; see truth table of each gate. 1. y= AC 2. y= ABD 3. y=AD + BD

* SECTION 3-5 SECTION 3-11
1. Output of second INVERTER will be same as input A. 1.z=4AB+C 2 y=@R+ S+ 1)Q 3. Same
2. ywill be LOW only for 4 = B = 1. as Figure 3-28 except NAND is replaced by NOR.

4. y=AB(C+ D)
SECTION 3-6

. x=A+ B+ C+A4D 2. x=D(AB+ CO)+E SECTION 3-12
1. Three 2. NOR circuit is more efficient because it
SECTION 3-7 can be implemented with one 74LS02 IC.

1. x=1 2. x=1 3. x = 1 for both. 3.x=(A—B)(E'I—))=(E)+(5)=AB+CD
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SECTION 3-13

1. Output goes LOW when any input is HIGH.

2. Output goes HIGH only when all inputs are LOW.
3. Output goes LOW when any input is LOW.

4. Output goes HIGH only when all inputs are HIGH.

SECTION 3-14
1. Zwill go HIGH when A = B=0and C= D = 1.

2. Zwill go LOW when A = B = 0, E =1, and either C
or D or both are 0. 3. Two 4. Two 5. LOW
6. A=B=0,C=D=1 7. W

SECTION 3-15

1. See Figure 3-41. 2. Rectangle with & inside, and
triangles on inputs.
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B OBJECTIVES

Upon completion of this chapter, you will be able to:

m Convert a logic expression into a sum-of-products expression.

m Perform the necessary steps to reduce a sum-of-products expression to its sim-
plest form.

m Use Boolean algebra and the Karnaugh map as tools to simplify and design logic
circuits.

m Explain the operation of both exclusive-OR and exclusive-NOR circuits.

B Design simple logic circuits without the help of a truth table.

B Implement enable circuits.

m Cite the basic characteristics of TTL and CMOS digital ICs.

m Use the basic troubleshooting rules of digital systems.

B Deduce from observed results the faults of malfunctioning combinational logic
circuits.

m Describe the fundamental idea of programmable logic devices (PLDs).

® Outline the steps involved in programming a PLD to perform a simple combina-
tional logic function.

m Go to the CUPL User's Manual to acquire the information needed to do a simple
programming experiment in the lab.

Bl INTRODUCTION

In Chapter 3 we studied the operation of all of the basic logic gates, and we used
Boolean algebra to describe and analyze circuits that were made up of combina-
tions of logic gates. These circuits can be classified as combinational logic circuits
because, at any time, the logic level at the output depends on the combination of
logic levels present at the inputs. A combinational circuit has no memory charac-
teristic, so its output depends only on the current value of its inputs.

In this chapter we will continue our study of combinational circuits. To start,
we will go further into the simplification of logic circuits. Two methods will be
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used; one will use Boolean algebra theorems, the other a mapping technique. In
addition, we will study simple techniques for designing combinational logic circuits
to satisfy a given set of requirements. A complete study of logic-circuit design is
not one of our objectives, but the methods we introduce will provide a good intro-
duction to logic design.

A good portion of the chapter is devoted to the troubleshooting of combina-
tional circuits. This first exposure to troubleshooting should begin to develop the
type of analytical skills needed for successful troubleshooting. To make this mater-
ial as practical as possible, we will first present some of the basic characteristics
of logic-gate ICs in the TTL and CMOS logic families along with a description of the
most common types of faults encountered in digital IC circuits.

In the last section of the chapter, we will introduce the basic concepts behind
programmable logic devices; that is, ICs whose inner circuitry can be modified by
the user to perform different logic operations. This material—which is optional—
will be aimed at giving the reader enough of a start that she or he will be able to
go to the lab and do a basic programming experiment in the lab, provided the ap-
propriate equipment and software is available.

J) N [ I
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The methods of logic-circuit simplification and design that we will study require the
logic expression to be in a sum-of-products form. Some examples of this form are:

1. ABC+ ABC
2. AB+ ABC+ CD+ D
3. AB+ CD + EF+ GK+ HL

Each of these sum-of-products expressions consists of two or more AND terms
(products) that are ORed together. Each AND term consists of one or more variables
individually appearing in either complemented or uncomplemented form. For ex-
ample, in the sum-of-products expression ABC + ABC, the first AND product con-
tains the variables A, B, and C in their uncomplemented (not inverted) form. The
second AND term contains A and C in their complemented (inverted) form. Note
that in a sum-of-products expression, one inversion sign cannot cover more than
one variable in a term (e.g., we cannot have ABC or RST).

Product-of-Sums

Another general form for logic expressions is sometimes used in logic-circuit design.
Called the product-of-sums form, it consists of two or more OR terms (sums) that
are ANDed together. Each OR term contains one or more variables in comple-
mented or uncomplemented form. Here are some product-of-sum expressions:



Section 4-2 / Simplifying Logic Circuits e 109

1. A+ B+ OA+ O
2. (A + B)C + DF
3.4+ CO(B+D)XB+ A+ D+ E)

The methods of circuit simplification and design that we will be using are based on
the sum-of-products (SOP) form, so we will not be doing much with the product-
of-sums (POS) form. It will, however, occur from time to time in some logic circuits
that have a particular structure.

Nt 1. Which of the following expressions is in SOP form? ~

(@ AB+ CD+ E
() AB(C+ D)
© A+ BX(C+ D+ F)
(d MN + PQ
2. Repeat question 1 for the POS form.

4-2 SIMPLIFYING LOGIC CIRCUITS

Once the expression for a logic circuit has been obtained, we may be able to reduce
it to a simpler form containing fewer terms or fewer variables in one or more terms.
The new expression can then be used to implement a circuit that is equivalent to
the original circuit but that contains fewer gates and connections.

To illustrate, the circuit of Figure 4-1(a) can be simplified to produce the circuit
of Figure 4-1(b). Since both circuits perform the same logic, it should be obvious
that the simpler circuit is more desirable because it contains fewer gates and will
therefore be smaller and cheaper than the original. Furthermore, the circuit reliabil-
ity will improve because there are fewer interconnections that can be potential cir-
cuit faults.

In subsequent sections we will study two methods for simplifying logic circuits.
One method will utilize the Boolean algebra theorems and, as we shall see, is

B —e—] \A BC ‘j:./x B(A + BC)
C J I |—

A — _
B — x=ABC
C DO —]

o
(b}

FIGURE 4-1 It is often possible to simplify a logic circuit such as that in part (a) to produce
a more efficient implementation, shown in (b).
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greatly dependent on inspiration and experience. The other method (Karnaugh
mapping) is a systematic, step-by-step approach. Some instructors may wish to skip
over this latter method because it is somewhat mechanical and probably does not
contribute to a better understanding of Boolean algebra. This can be done without
affecting the continuity or clarity of the rest of the text.

4-3 ALGEBRAIC SIMPLIFICATION

We can use the Boolean algebra theorems that we studied in Chapter 3 to help us
simplify the expression for a logic circuit. Unfortunately, it is not always obvious
which theorems should be applied in order to produce the simplest result. Further-
more, there is no easy way to tell whether the simplified expression is in its simplest
form or whether it could have been simplified further. Thus, algebraic simplification
often becomes a process of trial and error. With experience, however, one can be-
come adept at obtaining reasonably good results.

The examples that follow will illustrate many of the ways in which the Boolean
theorems can be applied in trying to simplify an expression. You should notice that
these examples contain two essential steps:

1. The original expression is put into SOP form by repeated application of DeMor-
gan’s theorems and multiplication of terms.

2. Once the original expression is in SOP form, the product terms are checked for
common factors, and factoring is performed wherever possible. Hopefully, the
factoring results in the elimination of one or more terms.

EXAMPLE
4-1

Simplify the logic circuit shown in Figure 4-2(a).

Ay B

2 = ABC + AB(AC)

B ' I (a)

FIGURE 42 Example 4-1.

B DO J §+C
C z=AB +0C)
A—

{b)
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Solution

The first step is to determine the expression for the output using the method
presented in Section 3-6. The result is

2= ABC + AB - (AC)

Once the expression is determined, it is usually a good idea to break down all large
inverter signs using DeMorgan’s theorems and then multiply out all terms.

z=ABC+ AB(A + C) [theorem (17)]
= ABC + AB(A4 + ©) {[cancel double inversions]

= ABC + ABA + ABC  [multiply out]
= ABC + AB + ABC [A- 4= 4]
With the expression now in SOP form, we should look for common variables

among the various terms with the intention of factoring. The first and third terms
above have AC in common, which can be factored out:

z= AC(B+ B) + AB
Since B+ B = 1, then

z = AC(D) + AB
= AC+ 4B

We can now factor out A4, which results in
z= AC+ B)
This result can be simplified no further. Its circuit implementation is shown in Fig-

ure 4-2(b). It is obvious that the circuit in (b) is a great deal simpler than the origi-
nal circuit in (@).

Simplify the expression z = ABC + ABC + ABC.

Solution

The expression is already in SOP form. B
Method 1: The first two terms in the expression have the product 4B in
common. Thus,

z= AE(E + ©) + ABC
= AB(1) + ABC
= AB + ABC

We can factor the variable A from both terms:

z= A(B + BO)
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Invoking theorem (15b),
z=AB + O

Method 2: The original expression is z = ABC + ABC + ABC. The first two
terms have AB in common. The last two terms have AC in common. How do we
know whether to factor AB from the first two terms or AC from the last two terms?
Actually, we can do both by using the ABC term twice. In other words, we can
rewrite the expression as

z= ABC + ABC + ABC + ABC

where we have added an extra term AEQ This is valid and will not change the
value of the expression, since ABC + ABC' = ABC [theorem (7)]. Now we can
factor AB from the first two terms and AC from the last two terms:

z=AB(C+ C) + AC(B + B)
=AB-1+ AC-1
= AB + AC= AB + O

This is, of course, the same result as obtained with method 1. This trick of using
the same term twice can always be used. In fact, the same term can be used more
than twice if necessary.

Slmphfy z= AC(ABD) + ABCD + ABC.

Solution
First, use DeMorgan’s theorem on the first term:

z= AC(A+ B + D) + ABCD + ABC (step 1)
Multiplying out yields

2= ACA + ACB + ACD + ABCD + ABC @)

Since A - A = 0, the first term is eliminated:
z= ABC + ACD + ABCD + ABC 3
This is the desired SOP form. Now we must look for common factors among the
various product terms. The idea is to check for the largest common factor between
any two or more product terms. For example, the first and last terms have the

common factor BC, and the second and third terms share the common factor AD.
We can factor these out as follows:

z= BC(A + A + AD(C + BC) @
Now, since A+ A =1, and €+ BC = C + B theorem (152)], we have

z=BC+ AD(B+ ©) )
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This same result could have been reached with other choices for the factoring. For
example, we could have factored C from the first, second, and fourth product
terms in step 3 to obtain
2= C(AB + AD + AB) + ABCD
The expression inside the parentheses can be factored further:
z= C(B[A+ Al + AD) + ABCD
Since A + A = 1, this becomes
z= C(B+ AD) + ABCD
Multiplying out yields
z = BC+ ACD + ABCD
Now we can factor AD from the second and third terms to get
2= BC+ AD(C + BCO)

Using theorem (15a) the expression in parentheses becomes B + C. Thus, we
finally have

z=BC+ AD(B + O
This is the same result that we obtained earlier, but it took us many more steps.

This illustrates why you should look for the largest common factors: it will
generally lead to the final expression in the fewest steps.

EXAMPLE
4o -

Simplify the expression x = (4 + BXA + B+ D)D.

Solution

The expression can be put into sum-of-products form by multiplying out all the
terms. The result is

x = AAD + ABD + ADD + BAD + BBD + BDD
The first term can be eliminated, since A4 = 0. Likewise, the third and sixth terms
can be eliminated, since DD = 0. The fifth term can be simplified to BD, since
BB = B. This gives us
x = ABD + ABD + BD

We can factor BD from each term to obtain

x=BDA+ A+ 1)
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Clearly, the term inside the parentheses is always 1, so we finally have

x = BD
Simplify the circuit of Figure 4-3(a).
A A
z z
B = B
(a) (b)

FIGURE 43 Example 4-5.

Solution

The expression for output z is
z2=(A+ B4+ B)
Multiplying out to get the sum-of-products form, we obtain
z=AA+ AB + BA + BB
We can eliminate A4 = 0 and BB = 0 to end up with
z=AB + AB

This expression is implemented in Figure 4-3(b), and if we compare it with the
original circuit, we see that both circuits contain the same number of gates and
connections. In this case the simplification process produced an equivalent, but not
simpler, circuit.

Simplify x = ABC + ABD + CD.
Solution
You can try, but you will not be able to simplify this expression any further.
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1. State which of the following expressions are #ot in the sum-of-products form:
@ RST + RST + T
() ADC + ADC
(©) MNP + (M + N)P
(d) AB+ ABC + ABCD
2. Simplify the circuit in Figure 4-1(a) to arrive at the circuit of Figure 4-1(b).

3. Change each AND gate in Figure 4-1(a) to a NAND gate. Determine the new
expression for x and simplify it.

4-4 DESIGNING COMBINATIONAL LOGIC CIRCUITS

FIGURE 4-4 Circuit that

produces a 1 output only for the

A = 0, B =1 condition.

When the desired output level of a logic circuit is given for all possible input con-
ditions, the results can be conveniently displayed in a truth table. The Boolean ex-
pression for the required circuit can then be derived from the truth table. For exam-
ple, consider Figure 4-4(a), where a truth table is shown for a circuit that has two in-
puts, A and B, and output x. The table shows that output x is to be at the 1 level
only for the case where A = 0 and B = 1. It now remains to determine what logic
circuit will produce this desired operation. It should be apparent that one possible
solution is that shown in Figure 4-4(b). Here an AND gate is used with inputs 4 and
B, so that x = A - B. Obviously x will be 1 only if both inputs to the AND gate are
1, namely, A = 1 (which means that A = 0) and B = 1. For all other values of A and
B, the output x will be 0.

A B X
0 ol]o A
o 1||1 A -
1 ollo x = AB
1 1({lo B .

(a) (b)

A similar approach can be used for the other input conditions. For instance,
if x were to be high only for the 4 =1, B= 0 condition, the resulting circuit
would be an AND gate with inputs 4 and B. In other words, for any of the four pos-
sible input conditions we can generate a high x output by using an AND gate with
appropriate inputs to generate the required AND product. The four differ-
ent cases are shown in Figure 4-5. Each of the AND gates shown generates an
output that is 1 only for one given input condition and the output is 0 for all
other conditions. It should be noted that the AND inputs are inverted or not
inverted depending on the values that the variables have for the given condition. If
the variable is 0 for the given condition, it is inverted before entering the
AND gate.

Let us now consider the case shown in Figure 4-6(a), where we have a truth
table that indicates that the output x is to be 1 for two different cases: 4 = 0, B=1
and A = 1, B = 0. How can this be implemented? We know that the AND term A -
B will generate a 1 only for the A =0, B =1 condition, and the AND term A - B
will generate a 1 for the 4 = 1, B = 0 condition. Since x must be HIGH for either



116 » Chapter 4 / Combinational Logic Circuits

FIGURE 45 An AND gate with

appropriate inputs can be used to
produce a 1 output for a specific B
set of input levels.

AB  {HIGH only when A =0, B = 0}
AB  {HIGH only when A= 0,8 =1}

AB {HIGH onlywhenA=1,B= 0}

A8 {HIGHonlywhen A= 1,B =1}

condition, it should be clear that these terms should be ORed together to produce
the desired output, x. This implementation is shown in Figure 4-6(b), where the re-
sulting expression for the output is x = AB + AB.

In this example, an AND term is generated for each case in the table where
the output x is to be a 1. The AND gate outputs are then ORed together to pro-
duce the total output x, which will be 1 when either AND term is 1. This same
procedure can be extended to examples with more than two inputs. Consider the
truth table for a three-input circuit (Table 4-1). Here there are three cases where
the output x is to be 1. The required AND term for each of these cases is shown.
Again, note that for each case where a variable is 0, it appears inverted in the AND
term. The sum-of-products expression for x is obtained by ORing the three AND
terms.

x = ABC + ABC + ABC

Complete Design Procedure

Once the output expression has been determined from the truth table in sum-of-
products form, it can easily be implemented using AND and OR gates and INVERT-
ERs. Usually, however, the expression can be simplified, thereby resulting
in a more efficient circuit. The following example illustrates the complete design
procedure.

FIGURE 4-6 Each set of input
-conditions that is to produce a
HIGH output is implemented by
a separate AND gate. The AND
outputs are ORed to produce
final output.

O = = Ox
—t— —r—
> @ >

x = AB + AB

_A_.aoo>
- O = ofm

(a) (b)
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TABLE 4-1
A B 25 x
0 o0 0[O0
0 0 1|0
0 1 0 1 - A4BC
0 1 1 1 — A4BC
1 o0 oo
1 0 1 0
1 1 0| o
1 1 1 1 — ABC

Design a logic circuit that has three inputs, 4, B, and C, and whose output will be
HIGH only when a majority of the inputs are HIGH.

Solution
Step 1. Set up the truth table.

On the basis of the problem statement, the output x should be 1 whenever two or
more inputs are 1; for all other cases, the output should be 0 (Table 4-2).

TABLE 4-2
A B e x
0 0 0] 0
0 0 1 0
0 1 0| o
0 1 1 1 — 4BC
1 0 o0 o0
1 0 1 1 - ABC
1 1 0 1 - ABC
1 1 1 1 - ABC

Step 2. Write the AND term for each case where the output is a 1.

There are four such cases. The AND terms are shown next to the truth table (Table
4-2). Again note that each AND term contains each input variable in either
inverted or noninverted form.

Step 3. Wirite the sum-of-products expression for the output.

x = ABC + ABC + ABC + ABC
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Step 4. Simplify the output expression.
This expression can be simplified in several ways. Perhaps the quickest way is to
realize that the last term ABC has two variables in common with each of the other
terms. Thus, we can use the ABC term to factor with each of the other terms. The
expression is rewritten with the ABC term occurring three times (recall from
Example 4-2 that this is legal in Boolean algebra):
x = ABC + ABC + ABC + ABC + ABC + ABC
Factoring the appropriate pairs of terms, we have
x=BC(A+ A + AC(B + B) + AB(C + C)

Since each term in parentheses is equal to 1, we have

x = BC+ AC+ AB

Step 5. Implement the circuit for the final expression.

This expression is implemented in Figure 4-7. Since the expression is in SOP form,
the circuit consists of a group of AND gates working into a single OR gate.

) BC
AC

x=BC+AC +AB

’_AB

T?T

>

EXAMPLE

4-8

Refer to Figure 4-8(a) where an analog-to-digital converter is monitoring the dc
voltage of a 12-V storage battery on an orbiting spaceship. The converter’s output
is a four-bit binary number, ABCD, corresponding to the battery voltage in steps
of 1V, with 4 as the MSB. The converter’s binary outputs are fed to a logic
circuit that is to produce a HIGH output as long as the binary value is greater
than 0110, = 6,,; that is, the battery voltage is greater than 6 V. Design this logic
circuit.

Solution

The truth table is shown in Figure 4-8(b). For each case in the truth table we have
indicated the decimal equivalent of the binary number represented by the ABCD
combination.
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AURBHSEHED z
Analog- A MS;B A 00 0o 0 0 O 0
to- B 1B Logic z (1) o 0 0 1 0
sl digital C i C circuit > @2 0 0o 1 offo
Ve = converter D »i D 3 0 0 1 1 0
- LSBL @ 0 1 0 o]0
) (a) ) 0 1 0 1(|0
L ® 0 1 1 of{o
B 7. 01 1 _1}| 15ABCD
8 1 0 0 0[] 1>ABCD
@ 1 0 0 1}|1-ABCD
A @ (g 1 0 1 0O 1- ABCD
(1) 10 1 1} 15ABCD
o 120 1 1 0 O0}] 15ABCD
- 13 1 1 0 1[|1-ABCD
D &—of (14 1 1 1 o0}| 1>ABCD
‘ (13 1 1 1 1| 1>ABCD
(e) (b)

FIGURE 4-8 Example 4-8.

The output z is set equal to 1 for all those cases where the binary number is
greater than 0110. For all other cases, z is set equal to 0. This truth table gives us
the following sum-of-products expression:

z= ZBCD_+ ABCD + ABCD + ABCD + ABCD + ABCD
+ ABCD + ABCD + ABCD

Simplification of this expression will be a formidable task, but with a little care it
can be accomplished. The step-by-step process involves factoring and eliminating
terms of the form 4 + A4:

z= ABCD + ABC(D + D) + ABC(D + D) + ABC(D + D) + ABC(D + D)
= ABCD + ABC + ABC + ABC + ABC
= ABCD + AB(C + C) + AB(C + O
= ABCD + AB + AB
= ABCD + A(B + B)
= ABCD + A

This can be reduced further by invoking theorem (15a), which says that x + xy =
x + . In this case x = A and y = BCD. Thus,

z=ABCD+ A= BCD + A

This final expression is implemented in Figure 4-8(c).

As this example demonstrates, the algebraic simplification method can be
quite lengthy when the original expression contains a large number of terms. This
is a limitation that is not shared by the Karnaugh mapping method, as we will see
later.
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Refer to Figure 4-9(a). In a simple copy machine, a stop signal, S, is to be
generated to stop the machine operation and energize an indicator light whenever
either of the following conditions exists: (1) there is no paper in the paper feeder
tray; or (2) the two microswitches in the paper path are activated, indicating a jam
in the paper path. The presence of paper in the feeder tray is indicated by a HIGH
at logic signal P. Each of the microswitches produces a logic signal (Q and R) that
goes HIGH whenever paper is passing over the switch to activate it. Design the
logic circuit to produce a HIGH at output signal S for the stated conditions, and
implement it using the 74HC00 CMOS quad two-input NAND chip.

Feeder tray 2
sensor .
Logic
+5V circuit
T . Q
Paper- V 1kQ
sensing -
switches
N~ R
—e
1kQ
(a)
Q o—
R @—

FIGURE 49 Example 4-9.

Solution

P S=P+QR

Q &—
R L

(b)

Q o—]

R &—

(d)

. We will use the five-step process used in Example 4-7.

The truth table is shown in Table 4-3. The S output will be a logic 1 whenever
P = 0, since this indicates no paper in the feeder tray. § will also be a 1 for the
two cases where Q and R are both 1, indicating a paper jam. As the table shows,
there are five different input conditions that produce a HIGH output. (Step 1)

The AND terms for each of these cases are shown. (Step 2)
The sum-of-products expression becomes

S=PQR + POR+ PQOR + PQOR + PQR (Step 3)
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TABLE 4-3
P Q R | S
0 0 0 1 POR
o o0 1 1 PQOR
0 1 0 1 PQR
0 1 1 1 PQR
1 0 oo
1 0 1 0
1 1 0| o
1 1 1 1  PQOR

We can begin the simplification by factoring out PQ from terms 1 and 2 and by
factoring out PQ from terms 3 and 4:

§S=PQ(R + R + POQRR + R + POR (Step 4)
Now we can eliminate the R + R terms, since they equal 1:
§S=PQ + PQ+ POR
Factoring P from terms 1 and 2 allows us to eliminate Q from these terms:
§$= P+ PQR
Here we can apply theorem (15b) (x + xy = X + 3) to obtain
§S=P+ QR

The AND/OR implementation for this circuit is shown in Figure 4-9(b).  (Step 5)

+5V

74HC00

P . 4
/7

5

Q 1
>—_‘ 3 . —
: R 2 -
Note: The other two
74HCO00 gates on the chip

are not connected.

FIGURE 4-10 Circuit of Figure 4-9(d) implemented using 74HC00 NAND chip.
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To implement this circuit using the 74HC00 quad two-input NAND chip, we
must convert each gate and the INVERTER by their NAND-gate equivalents (as per
Section 3-12). This is shown in Figure 4-9(c). Clearly, we can eliminate the double
inverters to produce the NAND-gate implementation shown in Figure 4-9(d).

The final wired-up circuit is obtained by connecting two of the NAND gates
on the 74HCO0 chip. This CMOS chip has the same gate configuration and pin
numbers as the TTL 74LS00 chip of Figure 3-31. Figure 4-10 shows the wired-up
circuit with pin numbers, including the +5 V and GROUND pins. It also includes
an output driver transistor and LED to indicate the state of output S.

1. Write the sum-of-products expression for a circuit with four inputs and an out-
put that is to be HIGH only when input A4 is LOW at the same time that exactly
two other inputs are LOW.

2. Implement the expression of question 1 using all four-input NAND gates. How
many are required?

4-3 KARNAUGH MAP METHOD

The Karnaugh map is a graphical tool used to simplify a logic equation or to con-
vert a truth table to its corresponding logic circuit in a simple, orderly process. Al-
though a Karnaugh map (henceforth abbreviated K map) can be used for problems
involving any number of input variables, its practical usefulness is limited to five or
six variables. The following discussion will be limited to problems with up to four
inputs, since even five- and six-input problems are too involved and are best done
by a computer program.

Karnaugh Map Format

The K map, like a truth table, is a means for showing the relationship between logic
inputs and the desired output. Figure 4-11 shows three examples of K maps for two,
three, and four variables, together with the corresponding truth tables. These exam-
ples illustrate the following important points:

1. The truth table gives the value of output X for each combination of input values.
The K map gives the same information in a different format. Each case in the
truth table corresponds to a square in the K map. For example, in Figure
4-11(a), the A =0, B= 0 condition in the truth table corresponds to the AB
square in the K map. Since the truth table shows X = 1 for this case, a 1 is placed
in the AB square in the K map. Similarly, the 4=1, B=1 condition
in the truth table corresponds to the AB square of the K map. Since X =1
for this case, a 1 is placed in the AB square. All other squares are filled with
0s. This same idea is used in the three- and four-variable maps shown in the
figure.

2. The K-map squares are labeled so that horizontally adjacent squares differ only
in one variable. For example, the upper left-hand square in the four-variable map

is ABC D, while the square immediately to its right is ABCD (only the D vari-
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FIGURE 4-11 Karnaugh maps

and truth tables for (a) two, (b)

three, and (¢) four variables.

/ B B
A Bllx _
0 o0||1>AB o Al 0
0 1 0 {x:AB+AB}
1 0 0 A 0 1
1 1 1> AB
(a)
c C
A B Cl[x -
0 0 0|1 ABC AB Lilip
0 0 1||1-5ABC
01 0|[1-5A8BC L AB | 1 0
o1 11lo {X=ABQ+ABC}
100 0 + ABC + ABC
10 11lo AB | 1 0
110 1 - ABC _
11 1(lo AB1 0 | 0
(b)
ABCD”X
00000 COD CD cD CD
000 1{|1->ABCD L
00 10]]o0 AB| 0 1 0 0
001 1]]o
0100/[]o X
010 1|]1-ABCD {X=KBCD+KBED} Bl O 1 ° 0
011 0{]0 + ABCD + ABCD
011 110 B| o 1 1 0
1 000/]0
100 1/]0 AB| o 0 0 0
101 0/]o0
1701 1(]0
710010 B
171 0 1/{1—-ABCD
111 01]0
11 1 1|{1->ABCD

(c)

able is different). Similarly, vertically adjacent squares differ only in one variable.
For example, the upper left-hand square is AB C D, while the square directly be-
low it is ABC D (only the B variable is different).

Note that each square in the top row is considered to be adjacent to a corre-
sponding square in the bottom row. For example, the ABCD square in the top
row is adjacent to the ABCD square in the bottom row, since they differ only in
the A variable. You can think of the top of the map as being wrapped around to
touch the bottom of the map. Similarly, squares in the leftmost column are adja-
cent to corresponding squares in the rightmost column.

In order for vertically and horizontally adjacent squares to differ in only one vari-
able, the top-to-bottom labeling must be done in the order shown: AB, AB, AB,
AB. The same is true of the left-to-right labeling: CD, CD, CD, CD.

Once a K map has been filled with 0s and 1s, the sum-of-products expression for
the output X can be obtained by ORing together those squares that contain a 1.

squares contain a 1, so that X = ABC + ABC + ABC + ABC.



124 @

Chapter 4 / Combinational Logic Circuits

Looping
The expression for output X can be simplified by properly combining those squares
in the K map which contain 1s. The process for combining these 1s is called looping.

Looping Groups of Two (Pairs)

Figure 4-12(a) is the K map for a particular three-variable truth table. This map con-
tains a pair of 1s that are vertically adjacent to each other; the first represents ABC,
and the second represents ABC. Note that in these two terms only the 4 variable ap-
pears in both normal and complemented (inverted) form while B and C remain un-
changed. These two terms can be looped (combined) to give a resultant that elimi-
nates the A variable since it appears in both uncomplemented and complemented
forms. This is easily proved as follows:

X = ABC + ABC
=BC(A+ 4
BC(1) = BC

This same principle holds true for any pair of vertically or horizontally adjacent
1s. Figure 4-12(b) shows an example of two horizontally adjacent 1s. These two can
be looped and the C variable eliminated since it appears in both its uncomple-
mented and complemented forms to give a resultant of X = AB.

Another example is shown in Figure 4-12(c). In a K map the top row and bot-
tom row of squares are considered to be adjacent. Thus, the two 1s in this map can

be looped to provide a resultant of ABC + ABC = BC.

cC ¢ c c
AB| o 0 AB| o 0
AB {1 0 — _ AB [1 1] - = -
X = ABC + ABC X = ABC + ABC
= = AB
AB [1 , 0 BC AB| 0 0 A
AB| o | o AB| 0| o0
(a) {b)
v C ! C Ccb CD CD CD __
P ABC
AB |\ 1 0 AB|l 0 | 0 [1 1 ]
AB| O | 0 AB| 0 | 0 | 0 | 0 |X=ABCD+ABCD
X = ABC + ABC = BC + ABCD + ABCD
AB| o 0 AB[ o | 0 0 0 =ABC + ABD
AB | /1 0 AB| 1 0 0 1
: ‘ (d) ABD

(c)

FIGURE 4-12 Examples of looping pairs of adjacent 1s.
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Figure 4-12(d) shows a K map that has two pairs of 1s that can be looped. The
two 1s in the top row are horizontally adjacent. The two 1s in the bottom row are
also adjacent, since in a K map the leftmost column and the rightmost column of
squares are considered to be adjacent. When the top pair of 1s is looped, the D vari-
able is eliminated (since it appears as both D and D) to give the term ABC. Loop-
ing the bottom pair eliminates the C variable to give the term ABD. These two
terms are ORed to give the final result for X.

To summarize:

Looping a pair of adjacent 1s in a K map eliminates the variable that
appears in complemented and uncomplemented form.

Looping Groups of Four (Quads)

A K map may contain a group of four 1s that are adjacent to each other. This group
is called a quad. Figure 4-13 shows several examples of quads. In part (a) the four
1s are vertically adjacent, and in part (b) they are horizontally adjacent. The K map
in Figure 4-13(c) contains four 1s in a square, and they are considered adjacent to
each other. The four 1s in Figure 4-13(d) are also adjacent, as are those in Figure
4-13(e) because, as pointed out earlier, the top and bottom rows are considered to
be adjacent to each other, as are the leftmost and rightmost columns.

When a quad is looped, the resultant term will contain only the variables that
do not change form for all the squares in the quad. For example, in Figure 4-13(a)
the four squares that contain a 1 are ABC, ABC, ABC, and ABC. Examination of

cC C COb Ch CD ¢CD CO CD CD CD
_ TN _ __
0

AB| o0 |f1 AB|l 0 |o |0 | O AB|l 0 | ©

0

AB| o || 1 AB| 0 |0 | O 0 Rsoﬁ—ﬂ

AB| 0 || 1 AB[T 1h 1) ABOL?_-JO
0

AB| 0 1 AB| 0 | O 0 0 AB| 0 0 0
X=C X — AB X = BD
(a) (b) ()
CD CD CD CD __Cb Ccb cb CD __
ABl 0 |0 0 0 AB| 1 0 0 1
AB| o [ 0O 0 0 AB| © 0 0 0

FIGURE 4-13 Examples of looping groups of four 1s (quads).
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these terms reveals that only the variable C remains unchanged (both 4 and B ap-
pear in complemented and uncomplemented form). Thus, the resultant expression
for X is simply X = C. This can be proved as follows:

X = ABC + ABC + ABC + ABC
= AC(B + B) + AC(B + B)
= AC + AC

cA+AH=cC

As another example, consider Figure 4-13(d), where the four squares containing
1s are ABC' D, ABC D, ABCD, and ABCD. Examination of these terms indicates that
only the variables A and D remain unchanged, so that the simplified expression for
Xis

X = AD

This can be proved in the same manner that was used above. The reader should
check each of the other cases in Figure 4-13 to verify the indicated expressions for X.
To summarize:

Looping a quad of adjacent 1s eliminates the two variables that ap-
pear in both complemented and uncomplemented form.

Looping Groups of Eight (Octets)

A group of eight 1s that are adjacent to one another is called an octet. Several ex-
amples of octets are shown in Figure 4-14. When an octet is looped in a four-vari-
able map, three of the four variables are eliminated because only one variable re-
mains unchanged. For example, examination of the eight looped squares in Figure
4-14(a) shows that only the variable B is in the same form for all eight squares: the
other variables appear in complemented and uncomplemented form. Thus, for this
map, X = B. The reader can verify the results for the other examples in Figure 4-14.

To summarize:

Looping an octet of adjacent 1s eliminates the three variables that
appear in both complemented and uncomplemented form.

Complete Simplification Process

We have seen how looping of pairs, quads, and octets on a K map can be used to
obtain a simplified expression. We can summarize the rule for loops of any size:

When a variable appears in both complemented and uncomple-
mented form within a loop, that variable is eliminated from the ex-
pression. Variables that are the same for all squares of the loop must
appear in the final expression.

It should be clear that a larger loop of 1s eliminates more variables. To be ex-
act, a loop of two eliminates one variable, a loop of four eliminates two, and a loop



FIGURE 4-14 Examples of
looping groups of eight 1s
(octets).
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Ccb Cb CDb CD Cb CD CD CD
I T 0
ABl o |0 |o 0 AB || 1 1 0 {0
AB

AB
AB| 0 | O 0 0 AB |1 1 0 0
X=B X=C
(a) (b)
" CD CD CD CD ! _CDh CD CD CD
AB |\ 1 1 1 AB| 1 0 0 1
AB| 0 (0O 0 0 AB | 1 0 0 1
AB| 0 | O 0 0 AB| 1 0 0 1
Aé/ﬂ 111 1 ABl 1l o | o |l
! X =B ! X=D
(© {d)

of eight eliminates three. This principle will now be used to obtain a simplified logic
expression from a K map that contains any combination of 1s and 0s.

The procedure will first be outlined and then applied to several examples. The
steps below are followed in using the K-map method for simplifying a Boolean ex-
pression:

Step 1
Step 2
Step 3

Step 4
Step 5

Step 6

Step 7

Construct the K map and place 1s in those squares corresponding to the 1s
in the truth table. Place Os in the other squares.

Examine the map for adjacent 1s and loop those 1s which are not adjacent
to any other 1s. These are called isolated 1s.

Next, look for those 1s which are adjacent to only one other 1. Loop any
pair containing such a 1.

Loop any octet even if it contains some 1s that have already been looped.

Loop any quad that contains one or more 1s that have not already been
looped, making sure to use the minimum number of loops.

Loop any pairs necessary to include any 1s that have not yet been looped,
making sure to use the minimum number of loops.

Form the OR sum of all the terms generated by each loop.

These steps will be followed exactly and referred to in the following examples.
In each case, the resulting logic expression will be in its simplest sum-of-products

form.
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Figure 4-15(a) shows the K map for a four-variable problem. We will assume that
the map was obtained from the problem truth table (step 1). The squares are
numbered for convenience in identifying each loop.

FIGURE 4-15 Examples 4-10 to CD CD CD CCD
4-12. o
AB| 0 0 0 @
1 2 3 4
AB| O 1 1 0
5 a . ¢l X= ABCD + ACD + BD
L m — — [ —
AB| O 1 1 0 loop 4 loop loop 6,
9 10 n 12 11,15 7,10, 1
AB| 0O 0 1 0
13 14 \h/a5 16
(a)
Cb ChD CD CD
Al o o [(1)] o
1 2 3 4
AB [{[1 1 1 1 - _ _
((,, 6\”7)8><=AB+BC+ ACD
— — —
AB| U 1)1 0 0 ioop 5 loop 5, loop
9 10 11 12 6 7 8 6, 9’ 10 37
AB|l 0 | O 0 0
13 14 15 16

—— e — — ——
0 9,10 2,6 7.8 11,15

1
2
AB| O U ] 1 _ o _
5 C;Da X= ABC + ACD + ABC + ACD
A
10 11 12
L)
15

AB| O 0

13 14

(c)

Step 2 Square 4 is the only square containing a 1 that is not adjacent to any other
1. It is looped and is referred to as loop 4.

Step 3 Square 15 is adjacent only to square 11. This pair is looped and referred to
as loop 11, 15.

Step 4 There are no octets.

Step5 Squares 6, 7, 10, and 11 form a quad. This quad is looped (loop 6, 7, 10, 11).
Note that square 11 is used again, even though it was part of loop 11, 15.

Step 6 All 1s have already been looped.

Step 7 Each loop generates a term in the expression for X. Loop 4 is simply

ABCD. Loop 11, 15 is ACD (the B variable is eliminated). Loop 6, 7, 10, 11
is BD (A and C are eliminated).
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EXAMPLE Consider the K map in Figure 4-15(b). Once again we can assume that step 1 has
4-11 already been performed.

Step 2
Step 3

Step 4
Step 5

Step 6
Step 7

There are no isolated 1s.

The 1 in square 3 is adjacent only to the 1 in square 7. ILooping this pair
(loop 3, 7) produces the term ACD.

There are no octets.

There are two quads. Squares 5, 6, 7, and 8 form one quad. Looping this
quad produces the term AB. The second quad is made up of squares 5, 6,
9, and 10. This quad is looped because it contains two squares that have
not been looped previously. Looping this quad produces BC.

All 1s have already been looped.

The terms generated by the three loops are ORed together to obtain the ex-
pression for X.

Step 2
Step 3

Step 4
Step 5

Step 6
Step 7

Consider the K map in Figure 4-15(c).

There are no isolated 1s.

The 1 in square 2 is adjacent only to the 1 in square 6. This pair is looped
to produce ACD. Similarly, square 9 is adjacent only to square 10. Looping
this pair produces ABC. Likewise, loop 7, 8 and loop 11, 15 produce the
terms ABC and ACD, respectively.

There are no octets.

There is one quad formed by squares 6, 7, 10, and 11. This quad, however,
is not looped, because all the 1s in the quad have been included in other
loops.

All 1s have already been looped.
The expression for X is shown in the figure.

FIGURE 4-16 The same K map
with two equally good solutions.

Consider the K map in Figure 4-16(a).

Cb CDb ¢CDb D Cb' CD'CD CD

0 0 AB|[ O 1 0

(Tw 0
AB| 0 LLJ G:::E) AB| © G:::E) (T)
o .

:E) 1

0 1' AB| O 0 0

[} 1
X = ACD + ABC + ABC + ACD X = ABD + BCD + BCD + ABD
(a) (b)
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Step 2 There are no isolated 1s.

Step3 There are no 1s that are adjacent to only one other 1.
Step 4 There are no octets.

Step 5 There are no quads.

Steps 6 and 7 There are many possible pairs. The looping must use the minimum
number of loops to account for all the 1s. For this map there are two pos-
sible loopings, which require only four looped pairs. Figure 4-16(a) shows
one solution and its resultant expression. Figure 4-16(b) shows the other.
Note that both expressions are of the same complexity, and so neither is
better than the other.

Filling K Map from Output Expression

When the desired output is presented as a Boolean expression instead of a truth
table, the K map can be filled by using the following steps:

1. Get the expression into SOP form if it is not already so.

2. For each product term in the SOP expression, place a 1 in each K-map square
whose label contains the same combination of input variables. Place a 0 in all
other squares.

The following example illustrates this procedure.

Use a K map to simplify y = C(ABD + D) + ABC + D.

Solution

1. Multiply out the first term to get y = ABCD + CD + ABC + D which is now in
SOP form.

2. For the ABCD term simply put a 1 in the ABCD square of the K map (Figure
4-17). For the CD term place a 1 in all squares with CD in their labels; that
is, ABCD, ABCD, ABCD, ABCD. For the ABCterm place a 1 in all squares that
have an ABC in their labels; that is, ABCD, ABCD. For the D term place a 1 in all
squares that have a D in their labels; that is, all squares in the leftmost and right-
most columns.

FIGURE 4-17 Example 4-14. COD CD CD CD
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The K map is now filled and can be looped for simplification. Verify that
proper looping produces y = AB + C + D.

“Don’t-Care” Conditions

Some logic circuits can be designed so that there are certain input conditions for
which there are no specified output levels, usually because these input conditions
will never occur. In other words, there will be certain combinations of input levels
where we “don’t care” whether the output is HIGH or LOW. This is illustrated in the
truth table of Figure 4-18(a).

Here the output z is not specified as either 0 or 1 for the conditions 4, B, C =
1,0,0and A4, B, C= 0, 1, 1. Instead, an x is shown for these conditions. The x rep-
resents the don’t-care condition. A don’t-care condition can come about for sev-
eral reasons, the most common being that in some situations certain input combi-
nations can never occur, and so there is no specified output for these conditions.

A circuit designer is free to make the output for any don’t-care condition either
a 0 or a 1 in order to produce the simplest output expression. For example, the K
map for this truth table is shown in Figure 4-18(b) with an x placed in the 4B C and
ABC squares. The designer here would be wise to change the x in the ABC square
to a 1 and the x in the ABC square to a 0, since this would produce a quad that can
be looped to produce z = A, as shown in Figure 4-18(c).

Whenever don’t-care conditions occur, we must decide which x to change to 0
and which to 1 to produce the best K-map looping (i.e., the simplest expression).
This decision is not always an easy one. Several end-of-chapter problems will pro-
vide practice in dealing with don’t-care cases. Here’s another example.

cC ¢ cC cC
BB G AB| o | o AB 0
0 0 of]o 0
o o 1{]o _ ~
0 1 o0}fo AB| 0 | x AB| 0 | o
0 1 1 x} "don't :> —
1 0 O0}fxJ care" AB | 1 1 AB |[1 1 >z=A
10 1]]1
1 1 0f]1 _ _ ‘
1 1 1 1 AB X 1 AB 1 1

(a) (b) (c)

FIGURE 4-18 “Don’t-care” conditions should be changed to 0 or 1 to produce K-map
looping that yields the simplest expression.

Let’s design a logic circuit that controls an elevator door in a three-story building.
The circuit in Figure 4-19(a) has four inputs. M is a logic signal that indicates when
the elevator is moving (M = 1) or stopped (M = 0). FI, F2, and F3 are floor
indicator signals that are normally LOW, and they go HIGH only when the elevator
is positioned at the level of that particular floor. For example, when the elevator is
lined up level with the second floor, F2 = 1 and F1 = F3 = 0. The circuit output
is the OPEN signal which is normally LOW and is to go HIGH when the elevator
door is to be opened.
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FIGURE 4-19 Example 4-15.

M F1 F2 F3

117

Elevator
circuit

OPEN

(a)

2F3 F2F3 F2F3 F2F3

MFIf o | 1 | X | 1
MFI[ 1 | X | X | X
MFI| o | X | X | X
MFI| o | 0o | X |oO

We can fill in the truth table for the OPEN output (Figure 4-19(b)) as follows:

1. Since the elevator cannot be lined up with more than one floor at a time, then
only one of the floor inputs can be HIGH at any given time. This means that all
those cases in the truth table where more than one floor input is a 1 are “don’t-
care” conditions. We can place an x in the OPEN output column for those eight

(c)

M F1 F2 F3||OPEN
0 0 0 off O
0 0 0 1 1
o 0 1 0 1
0 0 1 1 X
0 1 0 O 1
0o 1t 0 1 X
0 1 1 0 X
o 1 1 1 X
1 0 0 O 0
1T 0 0 1 0
1T 0 1 0 0
10 1 1 X
1 1 0 O 0
T 1 0 1 X
1 1 1 0 X
1T 1 1 1 X
(b)

2F3 F2F3 F2F3 F2F3

MF1| o (1 'P‘ﬂ
MET (1 JL1 |1 OJ
MFil 0o | o |0 |oO
MFIl o | 0 | 0o |0

OPEN = M (F1 + F2 + F3)

cases where more than one Finput is 1.

2. Looking at the other eight cases, when M = 1 the elevator is moving, so OPEN
must be a 0 since we do not want the elevator door to open. When M = 0 (ele-
vator stopped) we want OPEN = 1 provided that one of the floor inputs is 1.
When M = 0 and all floor inputs are 0, the elevator is stopped but is not prop-
erly lined up with any floor, so we want OPEN = 0 to keep the door closed.

The truth table is now complete and we can transfer its information to the K
map in Figure 4-19(c). The map has only three 1s, but it has eight “don’t-cares.” By
changing four of these “don’t-care” squares to 1s we can produce quad loopings
that contain the original 1s (Figure 4-19(d)). This is the best we can do as far as
minimizing the output expression. Verify that the loopings produce the OPEN
output expression shown.

(d)
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Summary

The K-map process has several advantages over the algebraic method. K mapping is
a more orderly process with well-defined steps as compared with the trial-and-error
process sometimes used in algebraic simplification. K mapping usually requires
fewer steps, especially for expressions containing many terms, and it always pro-
duces a minimum expression.

Nevertheless, some instructors prefer the algebraic method because it requires a
thorough knowledge of Boolean algebra and is not simply a mechanical procedure.
Each method has its advantages, and although most logic designers are adept at
both, being proficient in one method is all that is necessary to produce acceptable
results.

There are other, more complex techniques that designers use to minimize logic
circuits with more than four inputs. These techniques are especially suited for cir-
cuits with large numbers of inputs where algebraic and K-mapping methods are not
feasible. Most of these techniques can be translated into a computer program that
will perform the minimization from input data that supply the truth table or the un-
simplified expression.

p—

. Use K mapping to obtain the expression of Example 4-7.

2. Use K mapping to obtain the expression of Example 4-8. This should empha-
size the advantage of K mapping for expressions containing many terms.

3. Obtain the expression of Example 4-9 using a K map.
4. What is a don’t-care condition?

4-6 EXCLUSIVE-OR AND EXCLUSIVE-NOR CIRCUITS

Two special logic circuits that occur quite often in digital systems are the exclusive-
OR and exclusive-NOR circuits.

Exclusive-OR
Consider the logic circuit of Figure 4-20(a). The output expression of this circuit is

x= AB + AB

The accompanying truth table shows that x = 1 for two cases: A = 0, B = 1 (the AB
term) and A = 1, B = 0 (the AB term). In other words:

This circuit produces a HIGH output whenever the two inputs are at op-
posite levels.

This is the exclusive-OR circuit, which will hereafter be abbreviated XOR.

This particular combination of logic gates occurs quite often and is very useful
in certain applications. In fact, the XOR circuit has been given a symbol of its own,
shown in Figure 4-20(b). This symbol is assumed to contain all of the logic contained
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B 0 0 0
B —¢ 0 11
AB 1 01
A AB
Ej
[: ‘ (@)
XOR gate symbols
x=ﬁ(-BBA
A = AB + AB A o—
=1 —O® x=A®B
B B o—

(c)

(b)

FIGURE 4-20 (a) Exclusive-OR circuit and truth table; (b) traditional XOR gate symbol; (c)
IEEE/ANSI symbol for XOR gate.

in the XOR circuit and therefore has the same logic expression and truth table. This
XOR circuit is commonly referred to as an XOR gate, and we consider it as another
type of logic gate. The IEEE/ANSI symbol for an XOR gate is shown in Figure
4-20(c). The dependency notation (= 1) inside the block indicates that the output
will be active-HIGH only when a single input is HIGH.

An XOR gate has only two inputs; there are no three-input or four-input XOR
gates. The two inputs are combined so that x = AB + AB. A shorthand way that is
sometimes used to indicate the XOR output expression is

x=A®@B

where the symbol @ represents the XOR gate operation.
The characteristics of an XOR gate are summarized as follows:

1. It has only two inputs and its output is

x=AB+ AB=A® B

2. Its output is HIGH only when the two inputs are at different levels.

Several ICs are available that contain XOR gates. Those listed below are gquad XOR
chips containing four XOR gates.

B 741886 Quad XOR (TTL family)
W 74C86  Quad XOR (CMOS family)
® 74HC86 Quad XOR (high-speed CMOS)
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Exclusive-NOR

The exclusive-NOR circuit (abbreviated XNOR) operates completely opposite to
the XOR circuit. Figure 4-21(a) shows an XNOR circuit and its accompanying truth
table. The output expression is

x= AB+ AB

which indicates along with the truth table that x will be 1 for two cases: A = B = 1
(the ABterm) and A = B = 0 (the AB term). In other words:

The XNOR produces a HIGH output whenever the two inputs are at
the same level.

It should be apparent that the output of the XNOR circuit is the exact inverse of
the output of the XOR circuit. The traditional symbol for an XNOR gate is obtained
by simply adding a small circle at the output of the XOR symbol [Figure 4-21(b)].
The IEEE/ANSI symbol adds the small triangle on the output of the XOR symbol.
Both symbols indicate an output that goes to its active-LOW state when only one
input is HIGH.

The XNOR gate also has only two inputs, and it combines them so that its out-

put is
x=AB + AB
A
A X
_ 1
B — 2 0
0
1

D;(_:‘AB +AB

(a)

A

J G

XNOR gate symbols

A x=A®B=AB+AB AO-T x=A®B
=1
B B —

(b) (c)

FIGURE 421 (a) Exclusive-NOR circuit; (b) traditional symbol for XNOR gate; (©)
IEEE/ANSI symbol.
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A shorthand way to indicate the output expression of the XNOR is
x=A®B

which is simply the inverse of the XOR operation. The XNOR gate is summarized as
follows:

1. It has only two inputs and its output is
x=AB+ AB=A® B
2. Its output is HIGH only when the two inputs are at the same level.

Several ICs are available that contain XNOR gates. Those listed below are quad
XNOR chips containing four XNOR gates.

B 7415266 Quad XNOR (TTL family)
B 74C266  Quad XNOR (CMOS)
B 74HC266 Quad XNOR (high-speed CMOS)

Each of these XNOR chips, however, has special output circuitry that limits its
use to special types of applications. Very often, a logic designer will obtain the
XNOR function simply by connecting the output of an XOR to an INVERTER.

Determine the output waveform for the input waveforms given in Figure 4-22.

B -

Qi | |

A I 1
| I I I |

X ! P I Lo |

B B ; P S A R —
| | || | |

| I_I I

| l |

o | | |

| | |

| | | |

to t1 tz t3

FIGURE 422 Example 4-16.

Solulion

The output waveform is obtained using the fact that the XOR output will go HIGH
only when its inputs are at different levels. The resulting output waveform reveals
several interesting points:

1. The x waveform matches the A4 input waveform during those time intervals when
B = 0. This occurs during the time intervals 4 to 4 and %, to %.
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2. The x waveform is the inverse of the A input waveform during those time inter-
vals when B = 1. This occurs during the interval # to #,.

3. These observations show that an XOR gate can be used as a controlled IN-
VERTER; that is, one of its inputs can be used to control whether or not the sig-
nal at the other input will be inverted. This property will be useful in certain
applications.

X% represents a two-bit binary number that can have any value (00, 01, 10, or
11); for example, when x; = 1 and x, = 0, the binary number is 10, and so on.
Similarly, y3 represents another two-bit binary number. Design a logic circuit,
using x;, X, ¥, and ), inputs, whose output will be HIGH only when the two
binary numbers x5, and j,);, are equal.

Solution

The first step is to construct a truth table for the 16 input conditions (Table 4-4).
The output z must be HIGH whenever the x;x, values match the y,y, values, that
is, whenever x; = y, and x, = j,. The table shows that there are four such cases.
We could now continue with the normal procedure, which would be to obtain a

TABLE44 T T ;

‘X X ¥1 Yo | z(Outpu)
0o 0 0 0 1
o o0 0 1 0
o 0 1 o0 0
o o 1 1 0
o 1 0 o0 0
0 10 1 1
0o 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 1
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 1

sum-of-products expression for z, attempt to simplify it, and then implement the
result. However, the nature of this problem makes it ideally suited for
implementation using XNOR gates, and a little thought will produce a simple
solution with minimum work. Refer to Figure 4-23; in this logic diagram x; and y,
are fed to one XNOR gate, and x, and y, are fed to another XNOR gate. The
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FIGURE 4-23 Circuit for X,
detecting equality of two two-bit  Binary
binary numbers. number

Xo @—

Binary i ) ®:
number
Yo

output of each XNOR will be HIGH only when its inputs are equal. Thus, for x, =
Y and x; = y; both XNOR outputs will be HIGH. This is the condition we are
looking for, because it means that the two two-bit numbers are equal. The AND
gate output will be HIGH only for this case, thereby producing the desired output.

% -'f:.,F.X‘i_b_{l_’l_,E o When simplifying the expression for the output of a combinational logic circuit,
' ‘ you may encounter the XOR or XNOR operations as you are factoring. This will
often lead to the use of XOR or XNOR gates in the implementation of the final
circuit. To illustrate, simplify the circuit of Figure 4-24(a).

A @ ?

B.———I [ l—

z = ABCD + ABCD +AD

ce
De T - —
ABCD
AD
(a)
B XY '/AD(BQBC)
C z=AD(B®C) + AD

A+D=AD

(b)

FIGURE 4-24 Example 4-18, showing how an XNOR gate may be used to simplify circuit
implementation.
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Solution
The unsimplified expression for the circuit is obtained as

z = ABCD + ABCD + AD
We can factor AD from the first two terms:
z= AD(BC + BC) + AD

At first glance you might think that the expression in parentheses can be replaced
by 1. But that would be true only if it were BC + BC. You should recognize the
expression in parentheses as the XNOR combination of B and C. This fact can be
used to reimplement the circuit as shown in Figure 4-24(b). This circuit is much
simpler than the original, since it uses gates with fewer inputs, and two
INVERTERs have been eliminated.

p—

. Use Boolean algebra to prove that the XNOR output expression is the exact
inverse of the XOR output expression.

2. What is the output of an XNOR gate when a logic signal and its exact inverse

are connected to its inputs?

3. A logic designer needs an INVERTER, and all that is available is one XOR gate
from a 74HC86 chip. Does he need another chip?

4-7 PARITY GENERATOR AND CHECKER

In Chapter 2 we saw that a transmitter can attach a parity bit to a set of data bits be-
fore transmitting the data bits to a receiver. We also saw how this allows the receiver
to detect any single-bit errors that may have occurred during the transmission. Fig-
ure 4-25 shows an example of one type of logic circuitry that is used for parity gen-
eration and parity checking. This particular example uses a group of four bits as
the data to be transmitted, and it uses an even-parity bit. It can readily be adapted
to use odd parity and any number of bits.

In Figure 4-25(a), the set of data to be transmitted is applied to the parity-gen-
erator circuit, which produces the even-parity bit, P, at its output. This parity bit is
transmitted to the receiver along with the original data bits, making a total of five
bits. In Figure 4-25(b), these five bits (data + parity) enter the receiver’s parity-
checker circuit, which produces an error output, E, that indicates whether or not a
single-bit error has occurred.

It should not be too surprising that both of these circuits employ XOR gates,
when we consider that a single XOR gate operates in such a way that it produces a
1 output if an odd number of its inputs are 1, and a 0 output if an even number of
its inputs are 1.
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Even-parity generator

Parity (P)

N

Transmitted
data with
parity bit

—HH[

(a)

Even-parity checker

P
D3

From D,
transmitter
Dy

Do

{1 = error
0 = no error}

(b)

FIGURE 4-25 XOR gates used to implement the parity generator and the parity checker for

an even-parity system.

EXAMPLE
4-19

Determine the parity generator’s output for each of the following sets of input
data, D;D,D,Dy: (2) 0111; (b) 1001; (c) 0000; (d) 0100. Refer to Figure 4-25(a).

Solution

For each case, apply the data levels to the parity-generator inputs and trace
them through each gate to the P output. The results are: (a) 1; (b) 0; (¢) 0; and
(d) 1. Note that Pis a 1 only when the original data contain an odd number of
1s. Thus, the total number of 1s sent to the receiver (data + parity) will be
even.

EXAMPLE
4-20

Determine the parity checker’s output (see Figure 4-25(b)) for each of the
following sets of data from the transmitter:

P D D, D D
@ 0 1 0 1 0
®» 1 11 1 0
© 1 11 1 1
@1 0 0 0 0
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Solution

For each case, apply these levels to the parity-checker inputs and trace them
through to the E output. The results are: (@) 0; (b) 0; () 1; (d) 1. Note that a 1 is
produced at E only when an odd number of 1s appear in the inputs to the parity
checker. This indicates that an error has occurred, since even parity is being
used.

4-8 ENABLE/DISABLE CIRCUITS

Each of the basic logic gates can be used to control the passage of an input logic
signal through to the output. This is depicted in Figure 4-26, where a logic signal, A,
is applied to one input of each of the basic logic gates. The other input of
each gate is the control input, B. The logic level at this control input will determine
whether the input signal is enabled to reach the output or disabled from reaching
the output. This controlling action is why these circuits came to be called gates.

Examine Figure 4-26 and you should notice that when the noninverting gates
(AND, OR) are enabled, the output will follow the A signal exactly. Conversely,
when the inverting gates (NAND, NOR) are enabled, the output will be the exact in-
verse of the A signal.

ENABLE DISABLE

A O—— X =A || || A O— x=0
B=1 &— B=0 @&—
. o UL
5 B=1 &— B=0 @&—j
A x=A || || . A X =1
B=0 B=1
_|—|_J—|_ A x=A -IJ_I_I_ -|_|_I_|' A x=0

B=0 B=1

FIGURE 4-26 Four basic gates can either enable or disable the passage of an input signal,
A, under control of the logic level at control input B.
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Also notice that AND and NOR gates produce a constant LOW output when
they are in the disabled condition. Conversely, the NAND and OR gates produce a
constant HIGH output in the disabled condition.

There will be many situations in digital-circuit design where the passage of a
logic signal is to be enabled or disabled, depending on conditions present at one or
more control inputs. Several are shown in the following examples.

Design a logic circuit that will allow a signal to pass to the output only when
control inputs B and C are both HIGH; otherwise, the output will stay LOW.

Solution

An AND gate should be used because the signal is to be passed without inver-
sion, and the disable output condition is a LOW. Since the enable condition must
occur only when B = C = 1, a three-input AND gate is used, as shown in Figure
4-27(a).

I1IL |
A® X
= !
B &—
C oe— C
(a) (b)

FIGURE 4-27 Examples 4-21 and 4-22.

Design a logic circuit that allows a signal to pass to the output only when one, but
not both, of the control inputs are HIGH; otherwise, the output will stay HIGH.

Solution

The result is drawn in Figure 4-27(b). An OR gate is used because we want the
output disable condition to be a HIGH, and we do not want to invert the signal.
Control inputs B and C are combined in an XNOR gate. When B and C are
different, the XNOR sends a LOW to enable the OR gate. When B and C are the
same, the XNOR sends a HIGH to disable the OR gate.

EXAMPLE' £LEy Design a logic circuit with input signal 4, control input B, and outputs X and Y to
4-23 ~ operate as follows:

1. When B = 1, output X will follow input 4, and output ¥ will be 0.
2. When B = 0, output X will be 0, and output Y will follow input A.

Solution

The two outputs will be 0 when disabled and will follow the input signal when
enabled. Thus, an AND gate should be used for each output. Since X is to be
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enabled when B = 1, its AND gate must be controlled by B, as shown in Figure
4-28. Since Yis to be enabled when B = 0, its AND gate is controlled by B.

X O—I_I—IF B=1
0 IF B=0

This circuit is called a pulse-steering circuit because it steers the input pulse to
one output or the other, depending on B.

1. Design a logic circuit with three inputs A4, B, C and an output that goes LOW
only when 4 is HIGH while B and C are different.

2. Which logic gates produce a 1 output in the disabled state?
3. Which logic gates pass the inverse of the input signal when they are enabled?

4-9 BASIC CHARACTERISTICS OF DIGITAL ICs

Digital ICs are a collection of resistors, diodes, and transistors fabricated on a single
piece of semiconductor material (usually silicon) called a substrate, which is com-
monly referred to as a chip. The chip is enclosed in a protective plastic or ceramic
package from which pins extend for connecting the IC to other devices. One of the
more common types of package is the dual-in-line package (DIP), shown in Fig-
ure 4-29(a), so called because it contains two parallel rows of pins. The pins are
numbered counterclockwise when viewed from the top of the package with respect
to an identifying notch or dot at one end of the package [see Figure 4-29(b)]. The
DIP shown here is a 14-pin package that measures 0.75 in. by 0.25 in.; 16-, 20-, 24-,
28-, 40-, and 64-pin packages are also used.

Figure 4-29(c) shows that the actual silicon chip is much smaller than the DIP;
typically, it might be a 0.05-in. square. The silicon chip is connected to the pins of
the DIP by very fine wires (1-mil diameter).

The DIP is probably the most common digital IC package found in older digital
equipment, but other types are becoming more and more popular. We will take a
look at some of these other types of IC packages in Chapter 8.

Digital ICs are often categorized according to their circuit complexity as mea-
sured by the number of equivalent logic gates on the substrate. There are currently
six levels of complexity that are commonly defined as shown in Table 4-5.

All of the specific ICs referred to in Chapter 3 and this chapter are SSI chips hav-
ing a small number of gates. In modern digital systems, medium-scale integration
(MSI) and large-scale integration devices (LSI, VLSI, ULSIL, GSI) perform most of the
functions that once required several circuit boards full of SSI devices. However, SSI
chips are still used as the “interface,” or “glue,” between these more complex chips.
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FIGURE 429  (a) Dual-in-line 1413121110 9 8
package (DIP); (b) top view, | | l | | I I
(c) actual silicon chip is much Notch
smaller than the protective \)
package. Chip may have )
small dot near pin 1 | I | | I | |
12 3 4 5 6 7
(b}
Actual
silicon chip
«— Pin 1

(c)

Typically, small combinations of discrete gates are used to connect the larger ICs to
each other or to external devices. Thus, it is necessary to know how to analyze, de-
sign, test, and troubleshoot simple combinational circuits.

TABLE 4-5
Complexity Gates per Chip
Small-scale integration (SSI) Fewer than 12
Medium-scale integration (MSI) 12 to 99
Large-scale integration (LSI) 100 to 9999

Very large-scale integration (VLSI) 10,000 to 99,999
Ultra large-scale integration (ULSD 100,000 to 999,999
Giga-scale integration (GSD 1,000,000 or more

Bipolar and Unipolar Digital ICs

Digital ICs can also be categorized according to the principal type of electronic
component used in their circuitry. Bipolar ICs are those that are made using the
bipolar junction transistor (NPN and PNP) as their main circuit element. Unipolar
ICs are those that use the unipolar field-effect transistor (P-channel and N-channel
MOSFETs) as their main element.

The TTL (transistor-transistor logic) family has been the major family of
bipolar digital ICs for over 30 years. The standard 74 series was the first series of
TTL ICs. It is no longer used in new designs, having been replaced by several
higher-performance TTL series, but its basic circuit arrangement forms the founda-
tion for all the TTL series [Cs. This circuit arrangement is shown in Figure 4-30(a) for
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+VDD
+Veo o— (14)
(14)
115 Q
Q,
Input A
m Output
(2)
Q,
Output
Y
InputA O (2) L GND
(1) -
\ (b)
Pin
number

(a)

FIGURE 430 (a) TTL INVERTER circuit; (b) CMOS INVERTER circuit. Pin numbers are given in parentheses.

the standard TTL INVERTER. Notice that the circuit contains several bipolar transis-
tors as the main circuit element.

TTL had been the leading IC family in the SSI and MSI categories up until the
last ten or so years. Since then its leading position has been challenged by the
CMOS family, which has gradually displaced TTL from that position. The CMOS
(complementary metal-oxide semiconductor) family belongs to the class of
unipolar digital ICs because it uses P- and N-channel MOSFETs as the main circuit
elements. Figure 4-30(b) is a standard CMOS INVERTER circuit. If we compare the
TTL and CMOS circuits in Figure 4-30, it is apparent that the CMOS version uses
fewer components. This is one of the main advantages of CMOS over TTL.

CMOS and TTL ICs dominate the field of SSI and MSI devices, and so we will
concentrate on these two logic families throughout the text. Chapter 8 will provide
a comprehensive study of the circuitry and characteristics of TTL and CMOS. For
now we need to look at only a few of their basic characteristics so that we can talk
about troubleshooting simple combinational circuits.

TTL Family

The TTL logic family actually consists of several subfamilies or series. Table 4-6 lists
the name of each TTL series together with the prefix designation used to identify
different ICs as being part of that series. For example, ICs that are part of the stan-
dard TTL series have an identification number that starts with 74. The 7402, 7438,
and 74123 are all ICs in this series. Likewise, ICs that are part of the low-power
Schottky TTL series have an identification number that starts with 74LS. The 741502,
74LS38, and 7415123 are examples of devices in the 74LS series.

The principal differences in the various TTL series have to do with their elec-
trical characteristics such as power dissipation and switching speed. They do not
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TTL Series Prefix Example IC
Standard TTL 74 7404 (hex INVERTER)
Schottky TTL 74S 74S04 (hex INVERTER)

Low-power Schottky TTL 74LS 741504 (hex INVERTER)
Advanced Schottky TTL 74AS 74AS04 (hex INVERTER)

Advanced low-power 74ALS 74ALS04 (hex INVERTER)
Schottky TTL

differ in the pin 13ybut or logic operations performed by the circuits on the chip.
For example, the 7404, 74504, 74LS04, 74AS04, and 74ALS04 are all hex-INVERTER
ICs, each containing six INVERTERs on a single chip.

CMOS Family

Several CMOS series are available and some of these are listed in Table 4-7. The
4000 series is the oldest CMOS series. This series contains many of the same logic
functions as the TTL family but was not designed to be pin-compatible with TTL de-
vices. For example, the 4001 quad NOR chip contains four two-input NOR gates, as
does the TTL 7402 chip, but the gate inputs and outputs on the CMOS chip will not
have the same pin numbers as the corresponding signals on the TTL chip.

The 74C, 74HC, 74HCT, 74AC, and 74ACT series are newer CMOS series. The
first three are pin-compatible with correspondingly numbered TTL devices. For ex-
ample, the 74C02, 74HC02, and 74HCTO02 have the same pin layout as the 7402,
74LS02, and so on. The 74HC and 74HCT series operate at a higher speed than 74C
devices. The 74HCT series is designed to be electrically compatible with TTL de-
vices; that is, a 74HCT integrated circuit can be connected directly to TTL devices
without any interfacing circuitry. The 74AC and 74ACT series are advanced-perfor-
mance ICs. Neither is pin-compatible with TTL. 74ACT devices are electrically com-
patible with TTL. We explore the various TTL and CMOS series in greater detail in
Chapter 8.

TABLE 4-7 Various series within the CMOS logic family.

CMOS Series Prefix Example IC
Metal-gate CMOS 40 4001 (quad NOR gates)
Metal-gate, pin-compatible with TTL 74C 74C02 (quad NOR gates)
Silicon-gate, pin-compatible with TTL, 74HC 74HCO02 (quad NOR gates)

high-speed
Silicon-gate, high-speed, pin-compatible and 74HCT 74HCTO02 (quad NOR gates)
electrically compatible with TTL

Advanced-performance CMOS, not pin- 74AC 74AC02 (quad NOR)
compatible or electrically compatible with
TTL

Advanced-performance CMOS, not pin- 74ACT 74ACTO02 (quad NOR)

compatible with TTL, but electrically
compatible with TTL
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Power and Ground

To use digital ICs, it is necessary to make the proper connections to the IC pins. The
most important connections are dc power and ground. These are required for the
circuits on the chip to operate correctly. Referring to Figure 4-30, you can see that
both the TTL and the CMOS circuits have a dc power supply voltage connected to
one of their pins, and ground to another. The power supply pin is labeled V. for
the TTL circuit, and Vp, for the CMOS circuit. Many of the newer CMOS integrated
circuits that are designed to be compatible with TTL integrated circuits also use the
Vee designation as their power pin.

If either the power or the ground connection is not made to the IC, the logic
gates on the chip will not respond properly to the logic inputs, and it will not pro-
duce the expected output logic levels.

Logic-Level Voltage Ranges

For TTL devices, V¢ is nominally +5 V. For CMOS integrated circuits, Vpp can
range from +3 to +18 V, although +5 V is most often used when CMOS integrated
circuits are used in the same circuit with TTL integrated circuits.

For standard TTL devices the acceptable input voltage ranges for the logic 0 and
logic 1 levels are defined as shown in Figure 4-31(a). A logic 0 is any voltage in the
range from 0 to 0.8 V; a logic 1 is any voltage from 2 to 5 V. Voltages that are not
in either of these ranges are said to be indeterminate and should not be used
as inputs to any TTL device. The IC manufacturers cannot guarantee how a TTL
circuit will respond to input levels that are in the indeterminate range (between
0.8 and 2.0 V).

The logic input voltage ranges for CMOS integrated circuits operating with
Vpp = +5 V are shown in Figure 4-31(b). Voltages between 0 and 1.5 V are defined
as a logic 0, and voltages from 3.5 to 5 V as a logic 1. The indeterminate range in-
cludes voltages between 1.5 and 3.5 V.

Unconnected (Floating) Inputs

What happens when the input to a digital IC is left unconnected? An unconnected
input is often called a floating input. The answer to this question will be different
for TTL and CMOS.

FIGURE 4-31 Logic-level input oV TTL 5oV CMOS*
voltage ranges for TTL and CMOS S0V RO
digital ICs. Loeie
LOGIC 1
35V
20V .. Indeterminate
Indeterminate
08V:---
LOGIC 0 LOGIC d
ov:.-- ov - --
*VDD =+5V

(a) (b)
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A floating TTL input acts just like a logic 1. In other words, the IC will respond
as if the input had a logic HIGH l'gvel applied to it. This characteristic is often used
when testing a TTL circuit. A lazy technician might leave certain inputs unconnected
instead of connecting them to a logic HIGH. Although this is logically correct, it is
not a recommended practice, especially in final circuit designs, since the floating
TTL input is extremely susceptible to picking up noise signals that will probably ad-
versely affect the device’s operation.

A floating TTL input will measure a dc level of between 1.4 and 1.8 V when
checked with a VOM or an oscilloscope. Even though this is in the indeterminate
range for TTL, it will produce the same response as a logic 1. Being aware of this
characteristic of a floating TTL input can be valuable when troubleshooting TTL cir-
cuits.

If a CMOS input is left floating, it may have disastrous results. The IC may be-
come overheated and eventually destroy itself. For this reason all inputs to a CMOS
integrated circuit must be connected to a LOW or a HIGH level or to the output of
another IC. A floating CMOS input will not measure as a specific dc voltage but will
fluctuate randomly as it picks up noise. Thus, it does not act as logic 1 or logic 0,
and so its effect on the output is unpredictable. Sometimes the output will oscillate
as a result of the noise picked up by the floating input.

Logic-Circuit Connection Diagrams

A connection diagram shows all electrical connections, pin numbers, IC numbers,
component values, signal names, and power supply voltages. Figure 4-32 shows a
typical connection diagram for a simple logic circuit. Examine it carefully and note
the following important points:

1. The circuit uses logic gates from two different ICs. The two INVERTERs are part
of a 74HCO04 chip which has been given the designation Z1. The 74HC04
contains six INVERTERs; two of them are used in this circuit, and each is la-
beled as being part of chip Z1. Similarly, the two NAND gates are part of a
74HCO0 chip that contains four NAND gates. All of the gates on this chip are
designated with the label Z2. By numbering each gate as Z1, Z2, Z3, and so

+5V +5V
CLOCK 14 14 IC Type
> ! 71 2 ! Z1 1 74HCO4 hex inverter
g 72 3 72 | 74HCOO quad nand
> CLKOUT
= 7
LOAD 4 4
> Z1
SHIFT 10
N\
’ d SHIFTOUT
22
8
9

FIGURE 4-32 Typical logic-circuit connection diagram.
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on, we can keep track of which gate is part of which chip. This is especially
valuable in more complex circuits containing many ICs with several gates per
chip.

. Each gate input and output pin number is indicated on the diagram. These pin

numbers and the IC labels are used to reference easily any point in the circuit.
For example, Z1 pin 2 refers to the output pin of the top INVERTER. Similarly,
we can say that Z1 pin 4 is connected to Z2 pin 9.

The power and ground connections to each IC (not each gate) are shown on the
diagram. For example, Z1 pin 14 is connected to +5 V, and Z1 pin 7 is connected
to ground. These connections provide power to all of the six INVERTERs that are
part of Z1.

Manufacturers of electronic equipment generally supply detailed schematics

that use a format similar to that in Figure 4-32. These connection diagrams are a vir-
tual necessity when troubleshooting a faulty circuit. We have chosen to identify in-
dividual ICs as Z1, Z2, Z3, and so on. Other designations that are commonly used
are IC1, IC2, IC3, and so on, and Ul, U2, U3, and so on.

10.

1. What is the most common type of digital IC package?
. Name the six common categories of digital ICs according to complexity.

True or false: A 74S74 chip will contain the same logic and pin layout as the
74LS74.

. True or false: A 74HC74 chip will contain the same logic and pin layout as

the 74AS74.

. Which CMOS series are not pin-compatible with TTL?
. What is the acceptable input voltage range of a logic 0 for TTL? What is it for

a logic 1?

. Repeat question 6 for CMOS operating at Vpp, = 5 V.

How does a TTL integrated circuit respond to a floating input?
How does a CMOS integrated circuit respond to a floating input?

Which CMOS series can be connected directly to TTL with no interfacing cir-
cuitry?

4-10 TROUBLESHOOTING DIGITAL SYSTEMS

There are three basic steps in fixing a digital circuit or system that has a fault (failure):

1.

Fault detection. Observe the circuit/system operation and compare it with the ex-
pected correct operation.

2. Fault isolation. Perform tests and make measurements to isolate the fault.

3. Fault correction. Replace the faulty component, repair the faulty connection, re-

move the short, and so on.

Although these steps may seem relatively apparent and straightforward, the ac-

tual troubleshooting procedure that is followed is highly dependent on the type and
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complexity of the circuitry, and on the kinds of troubleshooting tools and docu-
mentation that are available.

Good troubleshooting techniques can be learned only in a laboratory environ-
ment through experimentation and actual troubleshooting of faulty circuits and sys-
tems. There is absolutely no better way to become an effective troubleshooter than
to do as much troubleshooting as possible, and no amount of textbook reading can
provide that kind of experience. We can, however, help you to develop the analyt-
ical skills that are the most essential part of effective troubleshooting. We will de-
scribe the types of faults that are common to systems that are made primarily from
digital ICs and will tell you how to recognize them. We will then present typical
case studies to illustrate the analytical processes involved in troubleshooting. In ad-
dition, there will be end-of-chapter problems to provide you with the opportunity
to go through these analytical processes to reach conclusions about faulty digital
circuits.

For the troubleshooting discussions and exercises we will be doing in this
book, it will be assumed that the troubleshooting technician has the basic trou-
bleshooting tools available: logic probe, oscilloscope, logic pulser, current tracer. Of
course, the most important and effective troubleshooting tool is the technician’s
brain, and that's the tool we are hoping to develop by presenting troubleshooting
principles and techniques, examples and problems, here and in the following
chapters.

In the next three sections on troubleshooting, we will use only our brain and a
logic probe such as the one illustrated in Figure 4-33. The logic probe has a pointy
metal tip that is touched to the specific point you want to test. Here it is shown
probing (touching) pin 3 of an IC. It can also be touched to a printed circuit board
trace, an uninsulated wire, a connector pin, a lead on a discrete component such as
a transistor, or any other conducting point in a circuit. The logic level that is present
at the probe tip will be indicated by the status of an indicator light or LED in the
probe. The four possibilities are given in the table of Figure 4-33. Note that an in-
determinate logic level produces a dim indicator light. This includes the condition
where the probe tip is touched to a point in a circuit that is open or floating—that
is, not connected to any source of voltage.

Logic To Indicator Light Logic Level
probe +Vee OFF LOW
To ON (bright) HIGH
GND DIM INDETERMINATE*
FLASHING PULSING
"‘-—/’ llir;c::fator * Includes open or floating condition

FIGURE 433 A logic probe is used to monitor the logic level activity at an IC pin or any
other accessible point in a logic circuit.
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4-11 INTERNAL DIGITAL IC FAULTS

FIGURE 434 (a) IC input

The most common internal failures of digital ICs are:

. Malfunction in the internal circuitry
. Inputs or outputs shorted to ground or V¢

. Inputs or outputs open-circuited

BN e

. Short between two pins (other than ground or V)

We will now describe each of these types of failure.

Malfunction in Internal Circuitry

This is usually caused by one of the internal components failing completely or op-
erating outside its specifications. When this happens, the IC outputs do not respond
properly to the IC inputs. There is no way to predict what the outputs will do, be-
cause it depends on what internal component has failed. Examples of this type of
failure would be a base-emitter short in transistor Q4 or an extremely large resis-
tance value for R, in the TTL INVERTER of Figure 4-30(a). This type of internal IC
failure is not as common as the other three.

Input Internally Shorted to Ground or Supply

This type of internal failure will cause an IC input to be stuck in the LOW or HIGH
state. Figure 4-34(a) shows input pin 2 of a NAND gate shorted to ground within the
IC. This will cause pin 2 always to be in the LOW state. If this input pin is being dri-
ven by a logic signal B, it will effectively short B to ground. Thus, this type of fault
will affect the output of the device that is generating the B signal.

Internal

internally shorted to ground; (b)
IC input internally shorted to
supply voltage. These two types
of failures force the input signal
at the shorted pin to stay in the
same state. (¢) IC output
internally shorted to ground; (d)
output internally shorted to
supply voltage. These two
failures do not affect signals at
the IC inputs.

+5V short BV

: 14 \ 14
A o—— 3 A o— 3 X
2
B @ B .——2
7
Internal — =
short
(a) (b)
+5V +5V Internal
® short
: : 14
A @———I A O— 3 X
2 2
B @———— B &——
7
-l Internal _
- short -

(d)
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Similarly, an IC input pin could be internally shorted to +5 V as in Figure 4-34(b).
This would keep that pin stuck in the HIGH state. If this input pin is being driven
by a logic signal 4, it will effectively short A to +5 V.

Output Internally Shorted to Ground or Supply

This type of internal failure will cause the output pin to be stuck in the LOW or HIGH
state. Figure 4-34(c) shows pin 3 of the NAND gate shorted to ground within the IC.
This output is stuck LOW, and it will not respond to the conditions applied to input
pins 1 and 2; in other words, logic inputs 4 and B will have no effect on output X.

An IC output pin can also be shorted to +5 V within the IC as shown in Figure
4-34(d). This forces the output pin 3 to be stuck HIGH regardless of the state of the
signals at the input pins. Note that this type of failure has no effect on the logic sig-
nals at the IC inputs.

Refer to the circuit of Figure 4-35. A technician uses a logic probe to determine the
conditions at the various IC pins. The results are recorded in the figure. Examine
these results and determine if the circuit is working properly. If not, suggest some
of the possible faults.

FIGURE 435 Example 4-24.

Pin_ | Condition
Z1-3 | Pulsing
X Z1-4| LOW
3 72-1| LOW
72-2 HIGH
Z2-3 HIGH

Solution

Output pin 4 of the INVERTER should be pulsing, since its input is pulsing. The
recorded results, however, show that pin 4 is stuck LOW. Since this is connected
to Z2 pin 1, this keeps the NAND output HIGH. From our preceding discussion,
we can list three possible faults that could produce this operation.

First, there could be an internal component failure in the INVERTER that
prevents it from responding properly to its input. Second, pin 4 of the INVERTER
could be shorted to ground internal to Z1, thereby keeping it stuck LOW. Third,
pin 1 of Z2 could be shorted to ground internal to Z2. This would prevent the
INVERTER output pin from changing.

In addition to these possible faults, there can be external shorts to ground
anywhere in the conducting path between Z1 pin 4 and Z2 pin 1. We will see how
to go about isolating the actual fault in a subsequent example.

Open-Circuited Input or Output

Sometimes the very fine conducting wire that connects an IC pin to the IC’s internal
circuitry will break, producing an open circuit. Figure 4-36 in Example 4-25 shows
this for an input (pin 13) and an output (pin 6). If a signal is applied to pin 13, it will
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not reach the NAND-1 gate input and so will not have an effect on the NAND-1 out-
put. The open gate input will be in the floating state. As stated earlier, TTL devices
will respond as if this floating input is a logic 1, and CMOS devices will respond er-
ratically and may even become damaged from overheating.

The open at the NAND-4 output prevents the signal from reaching IC pin 6, so
there will be no stable voltage present at that pin. If this pin is connected to the in-
put of another IC, it will produce a floating condition at that input.

What would a logic probe indicate at pin 13 and at pin 6 of Figure 4-36?

A
Open | 1 2

[

| GND

[—
KNI IR CI A

74LS00 D

Solution

At pin 13, the logic probe will indicate the logic level of the external signal that is
connected to pin 13 (which is not shown in the diagram). At pin 6, the logic probe
will show a dim light for an indeterminate logic level since the NAND output level
never makes it to pin 6.

Refer to the circuit of Figure 4-37 and the recorded logic probe indications. What
are some of the possible faults that could produce the recorded results? Assume
that the ICs are TTL.

FIGURE 4-37 Example 4-20. 3 4 1 Pin | Condition
A 72 3 X Z1-3 HIGH
2 Z1-4 LOW
I—_ 721 LOW

Be 72-2 | Pulsing

72-3 Pulsing

Note: Ve and ground
connections to each
IC are not shown

Solution

Examination of the recorded results indicates that the INVERTER appears to be
working properly, but the NAND output is inconsistent with its inputs. The NAND
output should be HIGH, since its input pin 1 is LOW. This LOW should prevent
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the NAND gate from responding to the pulses at pin 2. It is probable that this
LOW is not reaching the internal NAND gate circuitry because of an internal open.
Because the IC is TTL, this open circuit would produce the same effect as a logic
HIGH at pin 1. If the IC had been CMOS, the internal open circuit at pin 1 might
have produced an indeterminate output and possible overheating and destruction
of the chip.

From our earlier statement regarding open TTL inputs, you might have
expected that the voltage of pin 1 of Z2 would be 1.4 to 1.8 V and should have
been registered as indeterminate by the logic probe. This would have been true if
the open circuit had been external to the NAND chip. There is no open circuit
between Z1 pin 4 and Z2 pin 1, and so the voltage at Z1 pin 4 is reaching Z2 pin
1, but it becomes disconnected inside the NAND chip.

Short Between Two Pins

An internal short between two pins of an IC will force the logic signals at those pins
always to be identical. Whenever two signals that are supposed to be different show
the same logic-level variations, there is a good possibility that the signals are shorted
together.

Consider the circuit in Figure 4-38, where pins 5 and 6 of the NOR gate are in-
ternally shorted together. The short causes the two INVERTER output pins to be
connected together so that the signals at Z1 pin 2 and Z1 pin 4 must be identical
even when the two INVERTER input signals are trying to produce different outputs.
To illustrate, consider the input waveforms shown in the diagram. Even though
these input waveforms are different, the waveforms at outputs Z1-2 and Z1-4 are the
same.

During the interval ¢ to #,, both INVERTERs have a HIGH input and both are
trying to produce a LOW output, so that their being shorted together makes no dif-
ference. During the interval # to #, both INVERTERs have a LOW input and are try-
ing to produce a HIGH output, so that again their being shorted has no effect. How-
ever, during the intervals # to # and # to #;, one INVERTER is trying to produce a
HIGH output while the other is trying to produce a LOW output. This is called sig-
nal contention because the two signals are “fighting” each other. When this hap-
pens the actual voltage level that appears at the shorted outputs will depend on the

4V - --
Z1-1
X oV
I | | [
4Vv... 1 | S
21-3 ! !
Internal oV--- : :
short | | | | |
712 b -4V
and !
214 OV —

FIGURE 438 When two input pins are internally shorted, the signals driving these pins are
forced to be identical, and usually a signal with three distinct levels results.
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internal IC circuitry. For TTL devices it will usually be a voltage in the high end of
the logic 0 range (i.e., close to 0.8 V), although it may also be in the indeterminate
range. For CMOS devices it will often be a voltage in the indeterminate range.

Whenever you see a waveform like the Z1-2, Z1-4 signal in Figure 4-38 with
three different levels, you should suspect that two output signals may be shorted to-
gether.

fu—

. List the different internal digital IC faults.

2. Which internal IC fault can produce signals that show three different voltage
levels?

3. What would a logic probe indicate at Z1-2 and Z1-4 of Figure 4-38 if A =0
and B=1?

4. What is signal contention?

4-12 EXTERNAL FAULTS

We have seen how to recognize the effects of various faults internal to digital ICs.
Many more things can go wrong external to the ICs; we will describe the most com-
mon ones in this section.

Open Signal Lines

This category includes any fault that produces a break or discontinuity in the con-
ducting path such that a voltage level or signal is prevented from going from one
point to another. Some of the causes of open signal lines are:

1. Broken wire
2. Poor solder connection; loose wire-wrap connection

3. Crack or cut trace on a printed circuit board (some of these are hairline cracks
that are difficult to see without a magnifying glass)

4. Bent or broken pin on an IC
5. Faulty IC socket such that the IC pin does not make good contact with the socket

This type of circuit fault can often be detected by a careful visual inspection and

then verified by disconnecting power from the circuit and checking for continuity
(i.e., a low-resistance path) with an ohmmeter between the two points in question.

Consider the CMOS circuit of Figure 4-39 and the accompanying logic probe
indications. What is the most probable circuit fault?

Solution

The indeterminate level at the NOR gate output is probably due to the indetermi-
nate input at pin 2. Since there is a LOW at Z1-6, this LOW should also be at Z2-2.
Clearly, the LOW from Z1-6 is not reaching Z2-2, and there must be an open
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Pin Condition
Z1-1 | Pulsing
Z1-2 | HIGH
Z1-3 | Pulsing
Z21-4 | LOW
Z1-5 | Pulsing
Z1-6 | LOW
Z2-3 | Pulsin
All ICs 72-2 Indetegrminate
are CMOS Z2-1 | Indeterminate
Z1: 74HCO8B
Z2: 74HCO02

FIGURE 439 Example 4-27.

circuit in the signal path between these two points. The location of this open
circuit can be determined by starting at Z1-6 with the logic probe and tracing the
LOW level along the signal path toward Z2-2 until it changes into an indeterminate
level.

Shorted Signal Lines

This type of fault has the same effect as an internal short between IC pins. It causes
two signals to be exactly the same (signal contention). A signal line may be shorted
to ground or V. rather than to another signal line. In those cases the signal will be
forced to the LOW or the HIGH state. The main causes for unexpected shorts be-
tween two points in a circuit are as follows:

1. Sloppy wiring. An example of this is stripping too much insulation from ends of
wires that are in close proximity.

2. Solder bridges. These are splashes of solder that short two or more points to-
gether. They commonly occur between points that are very close together, such
as adjacent pins on a chip.

3. Incomplete etching. The copper between adjacent conducting paths on a printed
circuit board is not completely etched away.

Again, a careful visual inspection can very often uncover this type of fault, and an
ohmmeter check can verify that the two points in the circuit are shorted together.

Faulty Power Supply

All digital systems have one or more dc power supplies that supply the Voc-and Vpp
voltages required by the chips. A faulty power supply or one that is overloaded
(supplying more than its rated amount of current) will provide poorly regulated
supply voltages to the ICs, and the ICs either will not operate or will operate errati-
cally.

A power supply may go out of regulation because of a fault in its internal cir-
cuitry, or because the circuits that it is powering are drawing more current than the
supply is designed for. This can happen if a chip or a component has a fault that
causes it to draw much more current than normal.
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It is a good troubleshooting practice to check the voltage levels at each power
supply in the system to see that they are within their specified ranges. It is also a
good idea to check them on an oscilloscope to verify that there is no significant
amount of ac ripple on the dc levels and to verify that the voltage levels stay regu-
lated during the system operation.

One of the most common signs of a faulty power supply is one or more chips
operating erratically or not at all. Some ICs are more tolerant of power supply
variations and may operate properly, while others do not. You should always
check the power and ground levels at each IC that appears to be operating in-
correctly.

Output Loading

When a digital IC has its output connected to too many IC inputs, its output cur-
rent rating will be exceeded, and the output voltage can fall into the indetermi-
nate range. This effect is called loading the output signal (actually it’s overload-
ing the output signal) and is usually the result of poor design or an incorrect
connection. :

1. What are the most common types of external faults?

2. List some of the causes of signal-path open circuits.
3. What symptoms are caused by a faulty power supply?
4. How might loading affect an IC output voltage level?

4-13 TROUBLESHOOTING CASE STUDY

The following example will illustrate the analytical processes involved in trou-
bleshooting digital circuits. Although the example is a fairly simple combinational
logic circuit, the reasoning and the troubleshooting procedures used can be applied
to the more complex digital circuits that we encounter in subsequent chapters.

Consider the circuit of Figure 4-40. Output Y is supposed to go HIGH for either of
the following conditions:

1. A= 1, B = 0 regardless of the level on C
2. A=0,B=1,C=1

You may wish to verify this for yourself.

When the circuit is tested, the technician observes that output Y goes HIGH
whenever A is HIGH or C is HIGH regardless of the level at B. She takes logic
probe measurements for the condition where 4 = B= 0, ¢ =1 and comes up
with the indications recorded in Figure 4-40.

Examine the recorded levels and list the possible causes for the malfunction.
Then develop a step-by-step procedure to determine the exact fault.
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1 Condition
C & Z1-1 LOW
Z1-2 LOW
= 213 HIGH
72-4 LOW
72-5 HIGH
72-6,10 HIGH
ICs are TTL 22-13 HIGH
Z1: 74L.S86 72-12 HIGH
Z2: 74LS00 72-9,11 LOW
72-8 HIGH

FIGURE 440 Example 4-28.

Solution

All of the NAND gate outputs are correct for the levels present at their inputs. The
XOR gate, however, should be producing a LOW at output pin 3, since both of its
inputs are at the same LOW level. It appears that Z1-3 is stuck HIGH even though
its inputs should produce a LOW. There are several possible causes for this:

1. An internal component failure in Z1 that prevents its output from going LOW

2. An external short to Vi from any point along the conductors connected to
node X (shaded in diagram)

3. Pin 3 of Z1 internally shorted to V¢
4. Pin 5 of Z2 internally shorted to V¢
5. Pin 13 of Z2 internally shorted to Vi

All of these possibilities except for the first one will short node X (and every
IC pin connected to it) directly to Vg

The following procedure can be used to isolate the fault. This procedure is not
the only approach that can be used, and as we stated earlier, the actual
troubleshooting procedure that a technician uses is very dependent on what test
equipment is available.

1. Check the Vi and ground levels at the appropriate pins of Z1. Although it is un-
likely that the absence of either of these might cause Z1-3 to stay HIGH, it is a
good idea to make this check on any IC that is producing an incorrect output.

2. Turn off power to the circuit and use an ohmmeter to check for a short (resis-
tance less than 1 Q) between node X and any point connected to V¢ (such as
Z1-14 or Z2-14). If no short is indicated, the last four possibilities in our list can
be eliminated. This means that it is very likely that Z1 has an internal failure and
should be replaced.
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3. If step 2 shows that there is a short from node X to V., perform a thorough vi-
sual examination of the circuit board and look for solder bridges, unetched cop-
per slivers, uninsulated wires touching each other, and any other possible cause
of an external short to V.. A likely spot for a solder bridge would be between
adjacent pins 13 and 14 of Z2. Pin 14 is connected to V., and pin 13 to node X.
If an external short is found, remove it and perform an ohmmeter check to ver-
ify that node X is no longer shorted to Vg

4. If step 3 does not reveal an external short, the three possibilities that remain are
internal shorts to Vg at Z1-3, Z2-13, or Z2-5. One of these is shorting node X
to Vee

To determine which of these IC pins is the culprit, we should disconnect each
of them from node X one at a time and recheck for a short to V. after each
disconnection. When the pin that is internally shorted to V. is disconnected, node
X will no longer be shorted to V..

The process of disconnecting each suspected pin from node X can be easy or
difficult depending on how the circuit is constructed. If the ICs are in sockets, all
you need to do is to pull the IC from its socket, bend out the suspected pin, and
reinsert the IC into its socket. If the ICs are soldered into a printed circuit board,
you will have to cut the trace that is connected to the pin and repair the cut trace
when you are finished.

There is a troubleshooting technique that makes it unnecessary to bend pins
or cut traces when trying to isolate a short. It involves using a tool called a current
tracer to trace the flow of current through the short circuit as the node is being
pulsed. The current tracer senses the changing magnetic field around the
conductor through which the current is being shorted. We will examine this in
Chapter 8.

Example 4-28, although fairly simple, shows you the kinds of thinking that a
troubleshooter must employ in order to isolate a fault. You will have the opportu-
nity to begin developing your own troubleshooting skills by working on many end-
of-chapter problems that have been designated with a T for troubleshooting.

4-14 PROGRAMMABLE LOGIC DEVICES*

Now that you have been introduced to TTL and CMOS logic IC families, it is very
important to study another means to implement logic circuits. Many devices of
varying complexity are now available under the broad category of programmable
logic devices (PLDs). These devices allow the end user to specify the logical op-
eration of the device through a process called “programming.” This material is pre-
sented here in order to facilitate their potential use in lab experiments to implement
simple logic circuits and to learn the design process and development tools. Infor-
mation will be presented throughout this book on a “need to know” basis, which
will allow you to use the technology as you acquire the knowledge to understand
fully its inner workings. Those who will not be using PLDs in lab can skip these
sections with no loss of continuity.

*  All sections covering PLDs may be skipped without loss of continuity with the balance of Chapters 1-11.
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Programmable Logic Device (PLD)

Data
Input

. Qutput

L{>$x

Programming Inputs

FIGURE 441 Simplified example of a programmable logic device.

Let’s review the process we covered earlier of designing combinational digital
circuits. The input devices are identified and assigned an algebraic name like 4, B,
C, or LOAD, SHIFT, CLOCK. Likewise, output devices are given names like X, Z, or
CLOCK_OUT, SHIFT_OUT. Then a truth table is constructed that lists all the possible
input combinations and identifies the required state of the outputs under each input
condition. The truth table is one way of describing how the circuit is to operate. An-
other way to describe the circuit’s operation is the Boolean expression. From this
point the designer must find the simplest algebraic relationship and select digital ICs
that can be wired together to implement the circuit. You have probably experienced
that these last steps are the most tedious, time consuming, and prone to errors.

Programmable logic devices allow most of these tedious steps to be automated
by a computer and PLD development software. Using programmable logic improves
the efficiency of the design and development process. Consequently, most modern
digital systems are implemented in this way. The job of the circuit designer is to iden-
tify inputs and outputs, specify the logical relationship in the most convenient man-
ner, and select a programmable device that is capable of implementing the circuit at
the lowest cost. The concept behind programmable logic devices is simple: put lots
of logic gates in a single IC and control the interconnection of these gates electroni-
cally. Figure 4-41 illustrates this concept with a very simple combinational circuit.

The logic in this simplified PLD should be recognized as the sum of products
form (SOP) with AND gates feeding a final OR gate. The output X will be the SOP
function of the data inputs 4 and B. The actual output function will depend on
which AND gate outputs are connected to the OR gate inputs. Right now, all of the
AND outputs are shown connected to the OR gate through connecting links 1, 2, 3,
and 4. Each of these links can be left intact as shown or they can be selectively
opened up to disconnect the corresponding AND output from the OR gate. For ex-
ample, if links 1, 2, and 3 are opened, only AND gate 4 will be connected and the
OR output will be X = AB; if links 1 and 4 are opened, the output will be x = AB +
AB. The actual circuitry is such that an open link produces a LOW at its OR input.
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PLD '
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(Programmer)

Programming a PLD

In this way we can implement any two-variable sum-of-products expression by
opening up the appropriate links. The PLD chip comes with all of the links intact,
and they are all inside the IC. Notice that the diagram shows a set of “programming
inputs.” In order to access these links, the chip must be put into a special mode of
operation and special (higher) voltages must be applied to certain pins. This is
called programming the PLD. We will cover the details of how this is done in later
chapters. All you need to know at this point is that the chip is placed in a special
fixture called a programmer. Most modern programmers are connected to a per-
sonal computer that is running software containing libraries of information about
the many types of programmable devices available.

Figure 4-42 shows a typical programming setup. The initial design is entered
into the computer in one of several possible ways, which will be discussed shortly.
The PC, running the development software, translates the input design into a file
called a “fuse plot.” This file is like a map that shows which fuses (links) in the
programmable device are to be zapped open and which ones are to remain intact.
The fuse plot is then translated into a suitable output file format for transmission to
the programmer.

The programming software is invoked (called up and executed) on the PC to
establish communication with the programmer. This software allows the user to set
up the programmer for the type of device that is to be programmed, check if the de-
vice is blank, read the state of any fuse in the device, and provide instructions for
the user to program a chip. Ultimately, the part is placed into a special socket that
allows you to drop the chip in and then clamp the contacts onto the pins. This is
called a zero insertion force (ZIF) socket. Universal programmers that can pro-
gram any type of programmable device are available from numerous manufacturers.

Fortunately, as programmable parts began to proliferate, manufacturers saw the
need to standardize pin assignments and programming methods. As a result, the
Joint Electronic Device Engineering Council (JEDEC) was formed. One of the results
was JEDEC standard 3, a format for transferring programming data for PLDs, inde-
pendent of the PLD manufacturer or programming software. Pin assignments for
various IC packages were also standardized, making universal programmers less
complicated. Consequently, programming fixtures are able to program numerous
types of PLDs. The software that allows the designer to specify a configuration for a
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PLD simply needs to produce an output file that conforms to the JEDEC standards.
Then this JEDEC file can be loaded into any JEDEC-compatible PLD programmer
that is capable of programming the desired type of PLD.

Development Software

The process of generating a JEDEC output file to transfer a design to the PLD pro-
grammer would be extremely tedious if done by hand. Over the past 20 years many
software packages have been developed to allow users to enter their designs in
some convenient way and then automatically create the JEDEC file for the specified
device. The original software, developed by Monolithic Memories, Inc (MMID) was
called PALASM, an abbreviation for PAL assembler. Versions of this software can still
be found in the public domain for low-level PLD development. However, the mar-
ket has since produced software for PLD development that is much more powerful.
These tools are referred to as logic compilers. Assemblers and compilers are soft-
ware packages that run on a personal computer. The syntax used to describe the
circuit’s operation is often referred to as the hardware description language
(HDL). Each compiler requires a particular language. The two most popular uni-
versal compilers are ABEL (developed by Data I/O Corporation) and CUPL (devel-
oped by Logical Devices, Inc.). The user provides an input file in a format that the
software can interpret. The primary difference between an assembler and compiler
lies in the method used to describe the relationship between the inputs and the
outputs of the logic circuit. An assembler requires an input file that concisely de-
fines the operation of the device in terms very closely associated with the pro-
grammable device’s hardware, such as Boolean logic equations. A compiler can ac-
cept a more abstract representation of the same design and translate it into the
hardware details necessary to program the device. Figure 4-43 shows a compiler
that can accept three different input methods: Boolean equation, truth table, or
schematic diagram.

In the case of Boolean equations or truth tables, the input file is an ASCII text
file, created using any generic text editor on your PC. In this file the programmable
device is specified, along with assorted information such as the designer name,
data, revision, and so on. The pin assignments must also be specified and labeled

Boolean equation

Truth table
5T

JEDEC
file

Compiler

- - 0 o|>
-0 =0
- O O O|X

Schematic

A—
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with input and output signal names. Next, a set of Boolean logic equations or truth
tables is listed which specifies the logical operation of the device. Most of these de-
velopment tools are able to simplify the equations that are in the input file using re-
duction methods similar to those you have learned in this chapter. This feature
helps the designer by allowing the logic to be specified in the most straightforward
form without trying to minimize the equation. If the minimized form of the logic
equation requires more gates than the specified programmable device has, an error
message is generated.

The high-level compilers have several other options for specifying the circuit
operation. One of these options is called schematic capture. This mode of entry al-
lows the operation to be specified simply by drawing a logic circuit schematic dia-
gram using a computer aided drafting (CAD) software package. This graphic file is
then translated into some form of net list, which specifies the types of components
and how they are connected. This method is quite useful in redesigning an existing
circuit to use PLDs.

Some compilers are offered by third-party vendors and are intended to be uni-
versal. This means that you can write in the compiler’s language format and then
specify a programmable device from any manufacturer. These tools are excellent
when using well-established programmable devices from several manufacturers and
you want to use one language. Other compilers are offered by the manufacturer of
programmable devices and are very device-specific. These tools have the advantage
when you intend to select all your programmable devices from a single manufac-
turer and want to use newly introduced parts.

Introduction to CUPL (Universal Compiler
for Programmable Logic)

To provide real examples of simple PLD development we will utilize a popular and
readily available compiler called CUPL from Logical Devices, Inc. It can be used to
program a broad range of manufacturers’ components, and a demo version can be
downloaded freely from the Internet. CUPL also allows many of the convenient de-
sign entry modes as part of its hardware description language.

The input file is divided into several sections. The Header contains documenta-
tion details as well as information the compiler can use to program the desired part.
The Input and Output Specification sections are used to assign signal names to ac-
tual pins on the programmable device. The hardware description section allows the
design to be described in one of the convenient modes previously mentioned. We
will examine the Boolean equation mode in this section. The logical operators and
proper syntax for this mode are shown in Table 4-8.

As an example we will implement a simple combinational logic circuit using the
CUPL compiler and a very popular programmable device, the GAL 16V8. We will

CUPL Conventional
Function Operator Format Format
AND & A&B A'B
OR # A#B A+B
NOT ! 1A A

XOR $ A$B A@®B




CUPL defines these header
categories. Omitting them
produces warning messages.
Misspelling them produces error

messages.
Semicolons are
required at the
end of each line.
Name combo.pld ;
Partno 1234567 ;
Date June 2 ;
Revision 02 ;
Designer N.S.Widmer ;
Company Purdue University; All text between /*and"/
serves as comments. You
Assembly Chapter 4 ; can type anything here.
Location Chapter 4 ;
Device G16V8 ;
Format j ; /*JEDEC */
/* Simple Combinational Logic Example */
/¥ Inputs Specification */
\ -
pinl=A : The designer
chooses input
Pin2 =B ; and output signal
pin3=C . names.
/¥ Outputs Specification ~ */
pin 19 = X ;
Output
variable on Sum of Products
lt?gt-hand /* Hardware Description Section */ expression for X
side
X = [A&B&CHA&!B&CHA&B&!CHA&B
OR
AND
NOT

The designer chooses
these entries for
documentation purposes.

FIGURE 4-44 Example of format used for CUPL input file—Boolean equation mode.
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FIGURE 4-45 Wired circuit @
resulting from CUPL file of Figure
4-44.
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investigate the architectural details of the GAL 16V8 and the advanced features of
CUPL in later sections. To get started, refer back to Example 4-7, which showed the
process of designing a combinational circuit. In this example the truth table was
used to generate the SOP expression:

X = ABC+ ABC + ABC + ABC

Study Figure 4-44 to learn the format for CUPL input files. Notice that the char-
acter sequences /* and */ are used to enclose any comments that might make the in-
put file more understandable. Also notice that each statement must end with a semi-
colon (;).

The pin numbers that are to be used as inputs and outputs are selected based
on the capability of the programmable device that you have selected. You will learn
more about how to make these decisions later. Notice in the Hardware Description
Section that the output variable is always on the left-hand side of the = operator
and the SOP expression can be entered in its unsimplified form. The compiler will
reduce the equation to its simplest form before generating the output file. The re-
sulting circuit is wired as shown in Figure 4-45.

Development Cycle

The input file (also called the source file) can be typed using any text editor. The
compiler program is invoked and the source file is opened and compiled. If the
compiler generates any error messages, the cause must be determined and cor-
rected using the text editor to alter the input file. This process is repeated until
there are no more errors or warnings. At this point, the design may be tested us-
ing a simulator. A simulator is a computer program that calculates the correct out-
put logic states based on a description of the logic circuit and the current inputs.
A set of hypothetical inputs and corresponding outputs that will prove that the de-
vice works as expected are developed. These are called test vectors. If the test
vectors are thorough enough, the design can be proven before the first device is
programmed. When the designer is satisfied that the design will work, the JEDEC
file is generated and the programming software is invoked. The JEDEC file serves
as the input file to the programmer and the PLD is placed into the programmer fix-
ture (see Figure 4-42). Many programmers and associated software have the ability
to program the part and then run the test vectors on the input while monitoring
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FIGURE 446 PLD development

cycle flowchart.
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design flaw
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Create JEDEC file
Program PLD

| Troubleshoot

the outputs. This verifies that the PLD is fully functional. The PLD is then placed in
a circuit and is tested functionally with all peripheral components. The flowchart
of Figure 4-46 demonstrates the complete development process.

We have now covered the basics of PLD development at an introductory level.
At this point you should be able to go into the lab to try out the above combina-
tional example using the CUPL development system. The software as well as a
starter manual to help with CUPL details are included on the accompanying CD and
can be downloaded from Logical Device’s Web site. See the companion Web site of
this book for current links to these development tools.

1. What will be the PLD’s output function if links 1 and 2 in Figure 4-41 are
opened?
2. What will it be if all links are left intact?

3. Describe the contents of a PLD that is structured as shown in Figure 4-41 with
JSfour data inputs.

4. What are the steps involved in designing, programming, and testing a PLD?
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SUMMARY

1. The two general forms for logic expressions are the sum-of-products form and
the product-of-sums form.

2. One approach to the design of a combinatorial logic circuit is to (1) construct its
truth table, (2) convert the truth table to a sum-of-products expression, (3) sim-
plify the expression using Boolean algebra or K mapping, (4) implement the fi-
nal expression.

3. The K map is a graphical method for representing a circuit’s truth table and gen-
erating a simplified expression for the circuit output.

4. An exclusive-OR circuit has the expression x = AB + AB. Its output x will be
HIGH only when inputs 4 and B are at opposite logic levels.

5. An exclusive-NOR circuit has the expression x = AB + AB. Its output x will be
HIGH only when inputs A and B are at the same logic level.

6. Each of the basic gates (AND, OR, NAND, NOR) can be used to enable or dis-
able the passage of an input signal to its output.

7. The main digital IC families are the TTL and CMOS families. Digital ICs are
available in a wide range of complexities (gates per chip), from the basic to the
high-complexity logic functions.

8. To perform basic troubleshooting requires—at minimum—an understanding of
circuit operation, a knowledge of the types of possible faults, a complete logic-
circuit connection diagram, and a logic probe.

9. A programmable logic device (PLD) is an IC that contains a large number of
logic gates whose interconnections can be programmed by the user to generate
the desired logic relationship between inputs and outputs.

10. To program a PLD you need a development system that consists of a computer,
PLD development software, and a programmer fixture which does the actual
programming of the PLD chip.

IMPORTANT TERMS

sum-of-products SSI, MSI, LSI, VLSI, ULSI, programmer
product-of-sums GSI ZIF socket
Karnaugh map (K map) transistor/transistor logic JEDEC

looping

“don’t-care” condition

exclusive-OR (XOR)

exclusive-NOR (XNOR)

parity generator and
checker

enable/disable

dual-in-line package (DIP)

(TTL)
complementary metal-
oxide-semiconductor
(CMOS)
indeterminate
floating
logic probe
contention

hardware descriptive
language (HDL)

simulator

test vectors

compiler

CUPL
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PROBLEMS
SECTIONS 4-2 AND 4-3
B  4-1. Simplify the following expressions using Boolean algebra.
@ x= ABC+ AC
® y=(Q+ R(Q+R)
(© w=ABC+ ABC+ A
(d g=RTR+ S+ T)
(e) x=ABC + ABC+ ABC + ABC + ABC
® z=B+CXB+O+A+B+C
(® y=(C+ D) + ACD + ABC + ABCD + ACD
(h) x = AB(CD) + ABD + BCD
B 4-2. Simplify the circuit of Figure 4-47 using Boolean algebra.
FIGURE 4-47 Problems 4-2 and ) g— —— —o—]
4-3. . N o—eo 7

Qe— —e

B

|
Sjoje

B  4-3. Change each gate in Problem 4-2 to a NOR gate, and simplify the circuit using
Boolean algebra.

SECTION 4-4
, 4-4. Design the logic circuit corresponding to the truth table shown in Table 4-9.

B,D
B,D  4-5. Design a logic circuit whose output is HIGH on/y when a majority of inputs A,
B, and C are LOW.

TABLE 4-9
A B C x
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1
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46.

4-7.

4-8.

Open I{.DOL

A manufacturing plant needs to have a horn sound to signal quitting time. The

horn should be activated when either of the following conditions is met:

1. It’s after 5 o’clock and all machines are shut down.

2. It’s Friday, the production run for the day is complete, and all machines are
shut down.

Design a logic circuit that will control the horn. (Hint: Use four logic input

variables to represent the various conditions; for example, input A will be

HIGH only when the time of day is 5 o’clock or later.)

A four-bit binary number is represented as 4;4,4,4,, where A4, 4,, 4;, and 4,

represent the individual bits and 4, is equal to the LSB. Design a logic circuit

that will produce a HIGH output whenever the binary number is greater than

0010 and less than 1000.

Figure 4-48 shows a diagram for an automobile alarm circuit used to detect

certain undesirable conditions. The three switches are used to indicate the sta-

tus of the door by the driver’s seat, the ignition, and the headlights, respec-

tively. Design the logic circuit with these three switches as inputs so that the

alarm will be activated whenever either of the following conditions exists:

® The headlights are on while the ignition is off.

® The door is open while the ignition is on.

+5V
+5V

Closed
=
- LED
+5V
Ignition Logic Alarm
ON I P circuit
OFF
+5V ” =
ON I Lights
OFF
4-9. Implement the circuit of Problem 4-4 using all NAND gates.
4-10. Implement the circuit of Problem 4-5 using all NAND gates.
SECTION 4-5
4-11. Determine the minimum expression for each K map in Figure 4-49. Pay par-

4-12.
4-13.
4-14.
4-15.
4-16.

ticular attention to step 5 for the map in (a).

Simplify the expression in Problem 4-1(e) using a K map.

Simplify the expression in Problem 4-1(g) using a K map.

Simplify the expression in Problem 4-1(h) using a K map.

Obtain the output expression for Problem 4-7 using a K map.

Figure 4-50 shows a BCD counter that produces a four-bit output representing
the BCD code for the number of pulses that have been applied to the counter
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CO CD CD CD CO Cb CD CD C ¢
1 1 1 1 AB| 1 | 0 1 1 AB | 1 1
1 1 0 0 AB| 1 0| o0 1 AB| O 0
oo |0 |1 ABl 0 [0 [0 | 0O AB | 1 0
o [0 |1 1 ABl 1 |0 |1 1 AB | 1 X

(a) (b) {c)

FIGURE 449 Problem 4-11.

FIGURE 4-50 Problem 4-16.

input. For example, after four pulses have occurred, the counter outputs are
DCBA = 0100, = 4,,. The counter resets to 0000 on the tenth pulse and starts
counting over again. In other words, the DCBA outputs will never represent a
number greater than 1001, = 9,,. Design the logic circuit that produces a
HIGH output whenever the count is 2, 3, or 9. Use K mapping and take ad-
vantage of the don’t-care conditions.

D (MSB)
JLLL BCD . P Logi X HIGH only wh
Rl ogIc only when
—— . o ——
counter|B »| circuit {DCBA = 249, 310, OF 910}
A .

D 4-17. Figure 4-51 shows four switches that are part of the control circuitry in a

FIGURE 4-51 Problem 4-17.

r—/*%—

copy machine. The switches are at various points along the path of the copy
paper as the paper passes through the machine. Each switch is normally
open, and as the paper passes over a switch, the switch closes. It is impossi-
ble for switches SW1 and SW4 to be closed at the same time. Design the

. X HIGH whenever
+5 V :?SLIHC,[ T two or more switches
SW3 are closed*
+5V )
SW4 *SW1 and SW4 will never
‘ be closed at the same time
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logic circuit to produce a HIGH output whenever two or more switches are
closed at the same time. Use K mapping and take advantage of the don’t-care
conditions.

SECTION 4-6

B 4-18. (@) Determine the output waveform for the circuit of Figure 4-52. B!
(b) Repeat with the B input held LOW. Cd

(©) Repeat with B held HIGH. !

FIGURE 4-52 Problem 4-18. 1J—LJ-U_ A |
0 |

b !

I Time —— > X

) i i E

_l__l_,_ 8

B 4-19. Determine the input conditions needed to produce x = 1 in Figure 4-53.

FIGURE 4-53 Problem 4-19. A

B D—ox

B 4-20. A 7486 chip contains four XOR gates. Show how to make an XNOR gate us-
ing only a 7486 chip. Hint: See Example 4-16.

B 4-21. Modify the circuit of Figure 4-23 to compare two 4-bit numbers and produce
a HIGH output when the two numbers match exactly.

C 4-22. Figure 4-54 represents a relative-magnitude detector that takes two three-bit
binary numbers x,%,% and 3,%% and determines whether they are equal
and, if not, which one is larger. There are three outputs, defined as follows:
1. M =1 only if the two input numbers are equal

FIGURE 4-54 Problem 4-22.
Binary{xz—P M {x=y}
number{ x; =
X Xg =] Relative
LSB magnitude —»N {x>y}
Binary [ Y2—> detector
number{ e
Y Yo E» —»P (x<y}
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2. N=1 only if x,x,%, is greater than 1,1y,
3. P=1 only if y),y, is greater than x5,
Design the logic circuitry for this detector. The circuit has six inputs and three
outputs and is therefore much too complex to handle using the truth-table ap-
proach. Refer to Example 4-17 as a hint to how you might start to solve this

problem.

MORE DESIGN PROBLEMS

C,D 423

Figure 4-55 represents a multiplier circuit that takes two-bit binary numbers
X% and yy, and produces an output binary number 232,22, that is equal
to the arithmetic product of the two input numbers. Design the logic circuit
for the multiplier. (Hint: The logic circuit will have four inputs and four
outputs.)

FIGURE 4-55 Problem 4-23. MSB
 —

D 4-24.

D 4-25.

D 4-26.

C,D 427.

—
Xo LSB Multiplier > 2,

vi circuit —— 7,

Yo =1 —> 2,
LSB LSB

A BCD code is being transmitted to a remote receiver. The bits are Az, A4,
A, Ao, with Az as the MSB. The receiver circuitry includes a BCD error de-
tector circuit that examines the received code to see if it is a legal BCD
code (i.e., =1001). Design this circuit to produce a HIGH for any error
condition.

Design a logic circuit whose output is HIGH whenever A and B are both
HIGH as long as C'and D are either both LOW or both HIGH. Try to do this
without using a truth table. Then check your result by constructing a truth
table from your circuit to see if it agrees with the problem statement.

Four large tanks at a chemical plant contain different liquids being heated.
Liquid-level sensors are being used to detect whenever the level in tank A4 or
tank B rises above a predetermined level. Temperature sensors in tanks C
and D detect when the temperature in either of these tanks drops below a
prescribed temperature limit. Assume that the liquid-level sensor outputs A4
and B are LOW when the level is satisfactory and HIGH when the level is
too high. Also, the temperature-sensor outputs C and D are LOW when the
temperature is satisfactory and HIGH when the temperature is too low. De-
sign a logic circuit that will detect whenever the level in tank A4 or tank B is
too high at the same time that the temperature in either tank C or tank D is
too low.

Figure 4-56 shows the intersection of a main highway with a secondary access
road. Vehicle-detection sensors are placed along lanes C and D (main road)
and lanes A and B (access road). These sensor outputs are LOW (0) when no
vehicle is present and HIGH (1) when a vehicle is present. The intersection
traffic light is to be controlled according to the following logic:
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1. The east-west (E-W) traffic light will be green whenever both lanes C and
D are occupied.

2. The E-W light will be green whenever either C or D is occupied but lanes
A and B are not both occupied.

3. The north-south (N-S) light will be green whenever both lanes A and B are
occupied but € and D are not both occupied.

4. The N-S light will also be green when either A or B is occupied while C
and D are both vacant.

5. The E-W light will be green when #o vehicles are present.

Using the sensor outputs A, B, C, and D as inputs, design a logic circuit to

control the traffic light. There should be two outputs, N-S and E-W, that go

HIGH when the corresponding light is to be green. Simplify the circuit as

much as possible and show all steps.

FIGURE 4-56 Problem 4-27.

N
W E
A S
C —
____;v___é ______________________

e ‘ O e

SECTION 4-7

4-28. Redesign the parity generator and checker of Figure 4-25 to operate using odd
parity. (Hint: What is the relationship between an odd-parity bit and an even-
parity bit for the same set of data bits?)

4-29. Redesign the parity generator and checker of Figure 4-25 to operate on eight
data bits.

SECTION 4-8
4-30. (2) Under what conditions will an OR gate allow a logic signal to pass
through to its output unchanged?
(b) Repeat (a) for an AND gate.
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() Repeat for a NAND gate.
(d) Repeat for a NOR gate.

4-31. (a) Can an INVERTER be used as an enable/disable circuit? Explain.
(b) Can an XOR gate be used as an enable/disable circuit? Explain.

4-32. Design a logic circuit that will allow input signal A4 to pass through to the out-
put only when control input B is LOW while control input C is HIGH; other-
wise, the output is LOW.

4-33. Design a circuit that will disable the passage of an input signal only when
control inputs B, C, and D are all HIGH; the output is to be HIGH in the dis-
abled condition.

4-34. Design a logic circuit that controls the passage of a signal A according to the
following requirements:

1. Output X will equal A when control inputs B and C are the same.
2. X will remain HIGH when B and Care different.

4-35. Design a logic circuit that has two signal inputs 4; and A4, and a control input
S so that it functions according to the requirements given in Figure 4-57. This
type of circuit is called a multiplexer (covered in Chapter 9).

FIGURE 4-57 Problem 4-35. S 3

A, &—
z 0 = Ay
Multiplexer {3 1 = A,
Ay O—1
I
4-36. Use K mapping to design a circuit to meet the requirements of Example 4-17.

Compare this circuit with the solution in Figure 4-23. This points out that the
K-map method cannot take advantage of the XOR and XNOR gate logic. The
designer must be able to determine when these gates are applicable.

SECTIONS 4-9 TO 4-13

4-37.

4-38.

(@) A technician testing a logic circuit sees that the output of a particular
INVERTER is stuck LOW while its input is pulsing. List as many possible
reasons as you can for this faulty operation.

(b) Repeat part (a) for the case where the INVERTER output is stuck at an in-
determinate logic level.

The signals shown in Figure 4-58 are applied to the inputs of the circuit of Fig-

ure 4-32. Suppose that there is an internal open circuit at Z1-4.

(a) What will a logic probe indicate at Z1-4?

(b) What dc voltage reading would you expect a VOM to register at Z1-4? (Re-
member that the ICs are TTL.)

(© Sketch what you think the CLKOUT and SHIFTOUT signals will look
like.

* Recall that T indicates a troubleshooting exercise.
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FIGURE 4-58 Problem 4-38. CLOCK

LOAD

T 4-39.
T 440.

T 441.

T 442.

T 443

SHIFT

(d) Instead of the open at Z1-4, suppose that pins 9 and 10 of Z2 are inter-
nally shorted. Sketch the probable signals at 22-10, CLOCKOUT, and
SHIFTOUT.

Assume that the ICs in Figure 4-32 are CMOS. Describe how the circuit oper-

ation would be affected by an open circuit in the conductor connecting Z2-2

and Z2-10.

In Example 4-24 we listed three possible faults for the situation of Figure 4-35.

What procedure would you follow to determine which of the faults is the ac-

tual one? )

Refer to the circuit of Figure 4-37. Assume that the devices are CMOS. Also as-

sume that the logic probe indication at Z2-3 is “indeterminate” rather than

“pulsing.” List the possible faults, and write a procedure to follow to deter-

mine the actual fault.

Refer to the logic circuit of Figure 4-40. Recall that output Y'is supposed to be

HIGH for either of the following conditions:

1. A= 1, B= 0, regardless of C

2.A=0,B=1,C=1

When testing the circuit, the technician observes that Y goes HIGH only for

the first condition but stays LOW for all other input conditions. Consider the

following list of possible faults. For each one indicate “yes” or “no” as to
whether or not it could be the actual fault. Explain your reasoning for each

“no” response.

(@) An internal short to ground at Z2-13

(b) An open circuit in the connection to Z2-13

(©) An internal short to Vg at Z2-11

(d) An open circuit in the Vg connection to Z2

(e An internal open circuit at Z2-9

(® An open in the connection from Z2-11 to Z2-9

(8 A solder bridge between pins 6 and 7 of Z2

. Develop a procedure for isolating the fault that is causing the malfunction de-

scribed in Problem 4-42.

T 4-44. Assume that the gates in Figure 4-40 are all CMOS. When the technician tests

the circuit, he finds that it operates correctly except for the following condi-
tions:

1.A=1,B=0,C=0

2.A=0,B=1,C=1

For these conditions, the logic probe indicates indeterminate levels at Z2-6,
Z2-11, and Z2-8. What do you think is the probable fault in the circuit? Explain
your reasoning.
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T 4-45.

Figure 4-59 is a combinational logic circuit that operates an alarm in a car
whenever the driver and/or passenger seats are occupied and the seat belts
are not fastened when the car is started. The active-HIGH signals DRIV and
PASS indicate the presence of the driver and passenger, respectively, and are
taken from pressure-actuated switches in the seats. The signal IGN is active-
HIGH when the ignition switch is on. The signal BELTD is active-LOW and
indicates that the driver’s seat belt is unfastened; BELTP is the correspond-
ing signal for the passenger seat belt. The alarm will be activated (LOW)
whenever the car is started and either of the front seats is occupied and its
seat belt is not fastened.
(a) Verify that the circuit will function as described.
() Describe how this alarm system would operate if Z1-2 were internally
shorted to ground.
(©) Describe how it would operate if there were an open connection from Z2-
6 to Z2-10.

IGN &

+5V
14
DRIV @————— 12
1 11 .
3 13 72 ALARM
Z2
7
9
8 e
10
Z1: 74LS04
6 .
79 Z2: 74LS00

FIGURE 4-59 Problems 4-45, 4-46, and 4-47.

T 440.

T 447.

Suppose that the system of Figure 4-59 is functioning in such a way that the
alarm is activated as soon as the driver and/or passenger are seated and the
car is started, regardless of the status of the seat belts. What are the possible
faults? What procedure would you follow to find the actual fault?

Suppose that the alarm system of Figure 4-59 is operating in such a way that
the alarm goes on continuously as soon as the car is started regardless of the
state of the other inputs. List the possible faults and write a procedure to iso-
late the fault.

SECTION 4-14

C 448.

(2) Modify the PLD diagram of Figure 4-41 so that it can handle three data in-
puts.
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(b) Using this three-input PLD, show how to implement the circuit for Exam-
ple 4-7. Note that it is not necessary to simplify the output expression in
order to do this.

DRILL QUESTIONS ON PLDS (49 THROUGH 56)

4-49.

4-50.
4-51.
4-52.
453,

4-54.
. 4-55.

4-56.

True or false

(a) A compiler is used to communicate with a programmer.

(b) A JEDEC file can be used as the input file for a programmer.

(¢) If an input file compiles with no errors, it means the PLD circuit will work
correctly.

(d) A source file can be created on a standard text editor.

(e) Test vectors are used to simulate and test a device.

What are the /* */ characters used for in the CUPL input file?

Define source file.

What is a ZIF socket?

Name three entry modes used to input a circuit description into PLD develop-

ment software.

What do JEDEC and HDL stand for?

Write the CUPL source file hardware description in Boolean equation entry

mode to implement Example 4-9 on a GAL 16V8.

Write the CUPL source file hardware description in Boolean equation entry

mode to implement a 4-bit parity generator as shown in Figure 4-25(a).

DRILL QUESTION

B 457.

Define each of the following terms.
(@) Karnaugh map

(b) Sum-of-products form

(c) Parity generator

(d) Octet

(e) Enable circuit

(® Don’t-care state

(®) Floating input

(h) Indeterminate voltage level
(i) Contention

@ PLD

k) TTL

@ CMOS

MICROCOMPUTER APPLICATIONS

C 458.

In a microcomputer, the microprocessor unit (MPU) is always communicat-
ing with one of the following: (1) random-access memory (RAM), which
stores programs and data that can be readily changed; (2) read-only mem-
ory (ROM), which stores programs and data that never change; (3) external
input/output devices (I/O) such as keyboards, video displays, printers, and
disk drives. As it is executing a program, the MPU will generate an address
code that selects which type of device (RAM, ROM, or I/O) it wants to com-
municate with. Figure 4-60 shows a typical arrangement where the MPU
outputs an eight-bit address code A4;5 through A4g. Actually, the MPU outputs
a 16-bit address code, but the low-order bits A4, through A, are not used in
the device selection process. The address code is applied to a logic circuit
which uses it to generate the device select signals: RAM, ROM, and I/O.
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—» RAM

—

MPU

Ill_god) 00

FIGURE 4-60 Problem 4-58.

Analyze this circuit and determine the following.
(a) The range of addresses A;5 through Ag that will activate RAM
(b) The range of addresses that activate I/O
(©) The range of addresses that activate ROM
Express the addresses in binary and hexadecimal. For example, the answer to
(a) is A;5 to Ag = 00000000, to 11101111, = 00,4 to EFy;.

C,D 4-59. In some microcomputers the MPU can be disabled for short periods of time
while another device controls the RAM, ROM, and I/O. During these intervals
a special control signal (DMA) is activated by the MPU and is used to disable
(deactivate) the device select logic so that the RAM, ROM, and I/O are all in
their inactive state. Modify the circuit of Figure 4-60 so that RAM, ROM, and
I/O will be deactivated whenever the signal DMA is active, regardless of the
state of the address code.

ANSWERS TO SECTION REVIEW QUESTIONS

SECTION 4-1 SECTION 4-6

1. Only (@ 2. Only (©) 2. A constant LOW 3. No; the available XOR gate
can be used as an INVERTER by connecting one of its
inputs to a constant HIGH (see Example 4-16).

SECTION 4-3
1. Expression (b) is not in sum-of-products form,
because of the inversion sign over both the Cand D

SECTION 4-8

variables (i.e., the ACD term). Expression (c) is not in 1. x=AB® O 2. OR, NAND 3. NAND, NOR
sum-of-products form, because of the (M + N)Pterm.
3. x=A4+B+C SECTION 4-9

] 1. DIP 2. SSI, MSI, LSI, VLSI, ULSI, GSI 3. True
SECTION 4-4 o 4. True 5. 40, 74AC, 74ACT series 6. 0 to 0.8 V;
1. x= ABCD + ABCD + ABCD 2. Eight 20050V 7.0t015V;351050V 8. Asif

the input were HIGH 9. Unpredictably; it may
SECTION 4-5 overheat and be destroyed. 10. 74HCT and 74ACT

1. x=AB+ AC + BC 2. x=A+ BCD

3.5=P+ QR 4. An input condition for which SECTION 4-11
there is no specific required output condition; i.e., we 1. Open inputs or outputs; inputs or outputs shorted to
are free to make it 0 or 1 Ve inputs or outputs shorted to ground; pins shorted

together; internal circuit failures 2. Pins shorted
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together 3. For TTL, a LOW, for CMOS,
indeterminate 4. Two or more outputs connected
together

SECTION 4-12

1. Open signal lines; shorted signal lines; faulty power
supply; output loading 2. Broken wires; poor solder
connections; cracks or cuts in PC board; bent or broken

IC pins; faulty IC sockets 3. ICs operating erratically
or not at all 4. Logic level indeterminate

SECTION 4-14

1. x=18B 2. x=1 3. Four INVERTERSs, 16 AND
gates, 16 links, and a 16-input OR 4. See Figure 4-46



Flip-Flops and
Related Devices

OUTLINE
5-1 NAND Gate Latch 5-15
5-2  NOR Gate Latch 5-16
5-3  Troubleshooting Case Study 5-17
5-4  Clock Signals and Clocked 5-18
Flip-Flops
5-5 Clocked S-C Flip-Flop 5-19
5-6 Clocked J-K Flip-Flop
5-7  Clocked D Flip-Flop 5-20
5-8 D Latch (Transparent Latch) 5-21
5-9  Asynchronous Inputs 5-22
5-10 [EEE/ANSI Symbols
5-11  Flip-Flop Timing 5-23
5-24

Considerations
5-12 Potential Timing Problem in FF 5-25
Circuits
5-13 Master/Slave Flip-Flops 5-26
5-14 Flip-Flop Applications

Flip-Flop Synchronization
Detecting an Input Sequence
Data Storage and Transfer

Serial Data Transfer: Shift
Registers

Frequency Division and
Counting

Microcomputer Application
Schmitt-Trigger Devices

One-Shot (Monostable
Multivibrator)

Analyzing Sequential Circuits
Clock Generator Circuits

Troubleshooting Flip-Flop
Circuits

Applications Using
Programmable Logic Devices


Albustani
Rechteck



B OBJECTIVES

Upon completion of this chapter, you will be able to:

W Construct and analyze the operation of a latch flip-flop made from NAND or NOR
gates.

B Describe the difference between synchronous and asynchronous systems.

® Understand the operation of edge-triggered flip-flops.

B Analyze and apply the various flip-flop timing parameters specified by the manu-
facturers.
B Understand the major differences between parallel and serial data transfers.

B Draw the output timing waveforms of several types of flip-flops in response to a
set of input signals.

W Recognize the various IEEE/ANSI flip-flop symbols.

B Use state transition diagrams to describe counter operation.

W Use flip-flops in synchronization circuits.

W Connect shift registers as data transfer circuits.

B Employ flip-flops as frequency-division and counting circuits.

B Understand the typical characteristics of Schmitt triggers.

W Apply two different types of one-shots in circuit design.

W Design a free-running oscillator using a 555 timer.

B Recognize and predict the effects of clock skew on synchronous circuits.

W Troubleshoot various types of flip-flop circuits.

B Program a PLD using CUPLSs state transition format for circuit description.

B INTRODUCTION

The logic circuits considered thus far have been combinational circuits whose out-
put levels at any instant of time are dependent on the levels present at the inputs
at that time. Any prior input-level conditions have no effect on the present outputs
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External inputs

- because combinational logic circuits have no memory. Most digital systems are

made up of both combinational circuits and memory elements.

Figure 5-1 shows a block diagram of a general digital system that combines
combinational logic gates with memory devices. The combinational portion accepts
logic signals from external inputs and from the outputs of the memory elements.
The combinational circuit operates on these inputs to produce various outputs,
some of which are used to determine the binary values to be stored in the memory
elements. The outputs of some of the memory elements, in turn, go to the inputs of
logic gates in the combinational circuits. This process indicates that the external
outputs of a digital system are a function of both its external inputs and the infor-
mation stored in its memory elements.

The most important memory element is the flip-flop, which is made up of an
assembly of logic gates. Even though a logic gate, by itself, has no storage capabil-
ity, several can be connected together in ways that permit information to be
stored. Several different gate arrangements are used to produce these flip-flops
(abbreviated FF).

Figure 5-2(a) is the general type of symbol used for a flip-flop. It shows two out-
puts, labeled Q and Q, that are the inverse of each other. 0/ Q are the most common
designations used for a FF's outputs. From time to time, we will use other designations
such as X/X and A/A for convenience in identifying different FFs in a logic circuit.

The Q output is called the normal FF output, and Q is the inverted FF output.
Whenever we refer to the state of a FF, we are referring to the state of its normal

Output states

— Q —® Normal Q=1,Q=0: called HIGH or 1
— output state; also called
: FF SET state
Inputs
—_— Q ——@ Inverted Q=0, Q= 1: called LOW or O state;
output also called CLEAR or
(a) RESET state

(b)

FIGURE 5-2 General flip-flop symbol and definition of its two possible output states.
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(Q) output; it is understood that its inverted output (Q) is in the opposite state.
For example, if we say that a FF is in the HIGH (1) state, we mean that Q = 1; if
we say that a FF is in the LOW (0) state, we mean that Q0 = 0. Of course, the Q
state will always be the inverse of Q.

The two possible operating states for a FF are summarized in Figure 5-2(b).
Note that the HIGH or 1 state (Q = 1/Q = 0) is also referred to as the SET state.
Whenever the inputs to a FF cause it to go to the Q = 1 state, we call this seiting
the FF; the FF has been set. In a similar way, the LOW or 0 state (Q = 0/0 = 1)
is also referred to as the CLEAR or RESET state. Whenever the inputs to a FF
cause it to go to the (0 = 0 state, we call this clearing or reseiting the FF; the
FF has been cleared (reset). As we shall see, many FFs will have a SET input and/or
a CLEAR (RESET) input that is used to drive the FF into a specific output state.

As the symbol in Figure 5-2(a) implies, a FF can have one or more inputs.
These inputs are used to cause the FF to switch back and forth (“flip-flop”) be-
tween its possible output states. We will find out that most FF inputs need only to
be momentarily activated (pulsed) in order to cause a change in the FF output
state, and the output will remain in that new state even after the input pulse is
over. This is the FF's memory characteristic.

The flip-flop is known by other names, including latch and bistable multivibra-
tor. The term latch is used for certain types of flip-flops that we will describe. The
term bistable multivibrator is the more technical name for a flip-flop, but it is too
much of a mouthful to be used regularly.

— M N

— L]

5=-1 NAND GATE LATCH

The most basic FF circuit can be constructed from either two NAND gates or two
NOR gates. The NAND gate version, called a NAND gate latch or simply a latch, is
shown in Figure 5-3(a). The two NAND gates are cross-coupled so that the output
of NAND-1 is connected to one of the inputs of NAND-2, and vice versa. The gate
outputs, labeled Q and Q, respectively, are the latch outputs. Under normal condi-
tions, these outputs will always be the inverse of each other. There are two latch in-
puts: the SET input is the input that sets Q to the 1 state; the CLEAR input is the in-
put that clears Q to the O state.

" The SET and CLEAR inputs are both normally resting in the HIGH state, and one
of them will be pulsed LOW whenever we want to change the latch outputs. We
begin our analysis by showing that there are two equally likely output states when
SET = CLEAR = 1. One possibility is shown in Figure 5-3(a), where we have Q = 0
and Q = 1. With Q = 0, the inputs to NAND-2 are 0 and 1, which produce Q = 1.
The 1 from Q causes NAND-1 to have a 1 at both inputs to produce a 0 output at Q.
In effect, what we have is the LOW at the NAND-1 output producing a HIGH at the
NAND-2 output, which, in turn, keeps the NAND-1 output LOW.

The second possibility is shown in Figure 5-3(b), where Q = 1 and Q = 0. The
HIGH from NAND-1 produces a LOW at the NAND-2 output, which, in turn, keeps
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FIGURE 5-3 A NAND latch has two possible resting states when SET = CLEAR = 1.

the NAND-1 output HIGH. Thus, there are two possible output states when SET =
CLEAR = 1; as we shall soon see, the one that actually exists will depend on what
has occurred previously at the inputs.

Setting the Latch (FF)

Now let’s investigate what happens when the SET input is momentarily pulsed LOW
while CLEAR is kept HIGH. Figure 5-4(a) shows what happens when Q = 0 prior to
the occurrence of the pulse. As SET is pulsed LOW at time £, Q will go HIGH, and
this HIGH will force Q to go LOW so that NAND-1 now has two LOW inputs. Thus,
when SET returns to the 1 state at #;, the NAND-1 output remains HIGH, which, in
turn, keeps the NAND-2 output LOW.

Figure 5-4(b) shows what happens when Q = 1 and Q = 0 prior to the appli-
cation of the SET pulse. Since Q = 0 is already keeping the NAND-1 output HIGH,
the LOW pulse at SET will not change anything. Thus, when SET returns HIGH, the
latch outputs are still in the Q = 1, Q = 0 state.

We can summarize Figure 5-4 by stating that a LOW pulse on the SET input will
always cause the latch to end up in the Q = 1 state. This operation is called setting
the latch or FF.

1
o CLEAR ——

FIGURE 5-4 Pulsing the SET input to the 0 state when (a) Q = 0 prior to SET pulse; (b)
Q = 1 prior to SET pulse. Note that in both cases Q ends up HIGH.
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FIGURE 5-5 Pulsing the CLEAR input to the LOW state when (a) Q = 0 prior to CLEAR
pulse; (b) Q = 1 prior to CLEAR pulse. In each case, Q ends up LOW.

Clearing the Latch (FF)

Now let’s consider what occurs when the CLEAR input is pulsed LOW while SET is
kept HIGH. Figure 5-5(a) shows what happens when Q = 0 and Q = 1 prior to the
application of the pulse. Since Q = 0 is already keeping the NAND-2 output HIGH,
the LOW pulse at CLEAR will not have any effect. When CLEAR returns HIGH, the
latch outputs are still Q = 0 and Q = 1.

Figure 5-5(b) shows the situation where Q = 1 prior to the occurrence of the
CLEAR pulse. As CLEAR is pulsed LOW at ,, Q will go HIGH, and this HIGH forces
Q to go LOW so that NAND-2 now has two LOW inputs. Thus, when CLEAR returns
HIGH at #;, the NAND-2 output remains HIGH, which, in turn, keeps the NAND-1
output LOW.

Figure 5-5 can be summarized by stating that a LOW pulse on the CLEAR input
will always cause the latch to end up in the Q = 0 state. This operation is called
clearing or resetting the latch.

Simultaneous Setting and Clearing

The last case to consider is the case where the SET and CLEAR inputs are simultane-
ously pulsed LOW. This will produce HIGH levels at both NAND outputs so that Q =
Q = 1. Clearly, this is an undesired condition, since the two outputs are supposed to
be inverses of each other. Furthermore, when the SET and CLEAR inputs return HIGH,
the resulting output state will depend on which input returns HIGH first. Simultane-
ous transitions back to the 1 state will produce unpredictable results. For these rea-
sons the SET = CLEAR = 0 condition is normally not used for the NAND latch.

Summary of NAND Latch

The operation described above can be conveniently placed in a truth table (Figure
5-6) and is summarized as follows:

* 1. SET = CLEAR = 1. This condition is the normal resting state, and it has no effect
on the output state. The Q and Q outputs will remain in whatever state they were
in prior to this input condition.

2. SET = 0, CLEAR = 1. This will always cause the output to go to the Q = 1 state,
where it will remain even after SET returns HIGH. This is called setting the latch.
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FIGURE 56 (a) NAND latch; (o S—
(b) truth table.

Set Clear | | Output
1 1 No change
0 1 Q=1
1 0 Q=0
0 0 || Invalid*

*produces Q= Q = 1

CLEAR @&—

o

(b)
(a)

3. SET = 1, CLEAR = 0. This will always produce the Q = 0 state, where the out-
put will remain even after CLEAR returns HIGH. This is called clearing or reset-
ting the latch.

4. SET = CLEAR = 0. This condition tries to set and clear the latch at the same time
and can produce ambiguous results. It should not be used.

Alternate Representations

From the description of the NAND latch operation, it should be clear that the SET
and CLEAR inputs are active-LOW. The SET input will set Q = 1 when SET goes
LOW,; the CLEAR input will clear Q = 0 when CLEAR goes LOW. For this reason, the
NAND latch is often drawn using the alternate representation for each NAND gate,
as shown in Figure 5-7(a). The bubbles on the inputs as well as the labeling of the
signals as SET and CLEAR indicate the active-LOW status of these inputs. (You may
want to review Sections 3-13 and 3-14 on this.)

Figure 5-7(b) shows a simplified block representation that we will sometimes
use. The §and C labels represent the SET and CLEAR inputs, and the bubbles indi-
cate the active-LOW nature of these inputs. Whenever we use this block symbol, it
represents a NAND latch.

Terminology

The action of clearing a FF or a latch is also called resetting, and both terms are
used interchangeably in the digital field. In fact, a CLEAR input can also be called a
RESET input, and a SET-CLEAR latch can be called a SET-RESET latch.

FIGURE 5-7 (a) NAND latch SET Q
equivalent representation; (b) o—(S Q—e

simplified block symbol.

FF

L
:

CLEAR
(a) (b)
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The waveforms of Figure 5-8 are applied to the inputs of the latch of Figure 5-7.
Assume that initially Q = 0, and determine the Q waveform.

FIGURE 5-8 Example 5-1. 1 . .
« 1

1 1
CLEAR |_|

|
Q |

0 ——t—

! |

T, T, Ts

|
I
|
|
|
Il
|
|
|
|

Solution

Initially, SET = CLEAR = 1 so that Q will remain in the 0 state. The LOW pulse
that occurs on the CLEAR input at time 77 will have no effect, since Q is already in
the cleared (0) state.

The only way that Q can go to the 1 state is by a LOW pulse on the SET input.
This occurs at time 7, when SET first goes LOW. When SET returns HIGH at 73, Q
will remain in its new HIGH state.

At time 7; when SET goes LOW again, there will be no effect on Q because Q
is already set to the 1 state.

The only way to bring Q back to the 0 state is by a LOW pulse on the
CLEAR input. This occurs at time 75. When CLEAR returns to 1 at time 75, Q
remains in the LOW state.

This example shows that the latch output “remembers” the last input that was
activated and will not change states until the opposite input is activated.

It is virtually impossible to obtain a “clean” voltage transition from a mechanical

switch, because of the phenomenon of contact bounce. This is illustrated in
Figure 5-9(a), where the action of moving the switch from contact position 1 to 2
produces several output voltage transitions as the switch bounces (makes and
breaks contact with contact 2 several times) before coming to rest on contact 2.
The multiple transitions on the output signal generally last no longer than a
few milliseconds, but they would be unacceptable in many applications. A NAND
latch can be used to prevent the presence of switch bounce from affecting the
output. Describe the operation of the “switch debouncing” circuit in Figure 5-9(b).

Solution

Assume that the switch is resting in position 1 so that the CLEAR input is LOW and
Q = 0. When the switch is moved to position 2, CLEAR will go HIGH, and a LOW
will appear on the SET input as the switch first makes contact. This will set Q = 1
within a matter of a few nanoseconds (the response time of the NAND gate). Now
if the switch bounces off contact 2, SET and CLEAR will both be HIGH, and Q will
not be affected; it will stay HIGH. Thus, nothing will happen at Q as the switch
bounces on and off contact 2 before finally coming to rest in position 2.
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FIGURE 59 (a) Mechanical
contact bounce will produce
multiple transitions; (b) NAND
latch used to debounce a
mechanical switch.
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Likewise, when the switch is moved from position 2 back to position 1, it will

place a LOW on the CLEAR input as it first makes contact. This clears Q to the
LOW state, where it will remain even if the switch bounces on and off contact 1
several times before coming to rest.

Thus, the output at Q will consist of a single transition each time the switch is

moved from one position to the other.

Review Queslions

. What is the normal resting state of the SET and CLEAR inputs? What is the ac-

tive state of each input?

2. What will be the states of Q and Q after a FF has been cleared (reset)?

True or false: The SET input can never be used to make Q = 0.

. When power is first applied to any FF circuit, it is impossible to predict the ini-

tial states of Q and Q. What could be done to ensure that a NAND latch al-
ways started off in the Q = 1 state?

5=2 NOR GATE LATCH

Two cross-coupled NOR gates can be used as a NOR gate latch. The arrangement,
shown in Figure 5-10(a), is similar to the NAND latch except that the Q and Q out-
puts,have reversed positions.
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SET _
Q
Set Clear Qutput o s Q o
0 0 No change
1 0 Q=1 FF
0 1 Q=0
1 1 Invalid* o——C Ql—e
Q *produces Q = Q=0
CLEAR (b) (c)

(a)

The analysis of the operation of the NOR latch can be performed in exactly the
same manner as for the NAND latch. The results are given in the truth table in Fig-
ure 5-10(b) and are summarized as follows:

1. SET = CLEAR = 0. This is the normal resting state for the NOR latch, and it has
no effect on the output state. Q and Q will remain in whatever state they were in
prior to the occurrence of this input condition.

2. SET = 1, CLEAR = 0. This will always set Q = 1, where it will remain even after
SET returns to 0.

3. SET = 0, CLEAR = 1. This will always clear Q = 0, where it will remain even af-
ter CLEAR returns to 0.

4. SET = 1, CLEAR = 1. This Sondition tries to set and clear the latch at the same
time, and it produces Q = Q = 0. If the inputs are returned to 0 simultaneously,
the resulting output state is unpredictable. This input condition should not be used.

The NOR gate latch operates exactly like the NAND latch except that the SET
and CLEAR inputs are active-HIGH rather than active-LOW, and the normal resting
state is SET = CLEAR = 0. Q will be set HIGH by a HIGH pulse on the SET input,
and it will be cleared LOW by a HIGH pulse on the CLEAR input. The simplified
block symbol for the NOR latch in Figure 5-10(c) is shown with no bubbles on the
Sand Cinputs; this indicates that these inputs are active-HIGH.

EXAMPLE Assume that Q = 0 initially, and determine the Q waveform for the NOR latch

Bk it "~ inputs of Figure 5-11.
FIGURE 5-11 Example 5-3. SET I | l—'l
0 [ ! i
Lo !
CLEAR b | I l |
0 A, ﬁ I [ f
! | | |
) | |
Q | | |
0 | ] ]
Lo l
b |
T, T, T3 T4 Ts Te
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Solution
Initially, SET = CLEAR = 0, which has no effect on Q, and Q stays LOW. When
SET goes HIGH at time 7;, Q will be set to 1 and will remain there even after SET
returns to 0 at 75.

At T; the CLEAR input goes HIGH and clears Q to the 0 state, where it remains
even after CLEAR returns LOW at 7.

The CLEAR pulse at 75 has no effect on Q, since Q is already LOW. The SET
pulse at Tg again sets Q back to 1, where it will stay.

This example shows that the FF “remembers” the last input that was activated,
and it will not change states until the opposite input is activated.

Figure 5-12 shows a simple circuit that can be used to detect the interruption of a
light beam. The light is focused on a phototransistor that is connected in the
common-emitter configuration to operate as a switch. Assume that the latch has
previously been cleared to the 0 state by momentarily opening switch SW1, and
-describe what happens if the light beam is momentarily interrupted.

FIGURE 5-12 Example 5-4. +5V

S Q Alarm

+5V

W

= SWi1

Solution

With light on the phototransistor, we can assume that it is fully conducting so that
the resistance between the collector and the emitter is very small. Thus, v, will be
close to 0 V. This places a LOW on the SET input of the latch so that SET =
CLEAR = 0.

When the light beam is interrupted, the phototransistor turns off, and its
collector-emitter resistance becomes very high (i.e., essentially an open circuit).
This causes 2, to rise to approximately 5 V; this activates the SET input, which sets
Q HIGH and turns on the alarm.

Q will remain HIGH and the alarm will remain on even if v, returns to 0 V
(i.e., the light beam was interrupted only momentarily); this is because SET and
CLEAR will both be LOW, which will produce no change in Q.

In this application, the latch’s memory characteristic is used to convert a
momentary occurrence (beam interruption) into a constant output.
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Flip-Flop State on Power-Up

When power is applied to a circuit, it is not possible to predict the starting state of
a flip-flop’s output if its SET and CLEAR inputs are in their inactive state (e.g., S =
C =1 for a NAND latch, § = € = 0 for a NOR latch). There is just as much chance
that the starting state will be Q = 0 as Q = 1. It will depend on factors such as in-
ternal propagation delays, parasitic capacitance, and external loading. If a latch or
FF must start off in a particular state to ensure the proper operation of a circuit, then
it must be placed in that state by momentarily activating the SET or CLEAR input at
the start of the circuit’s operation. This is often achieved by application of a pulse to
the appropriate input.

1. What is the normal resting state of the NOR latch inputs? What is the active
state?

2. When a FF is set, what are the states of Q and Q?

3. What is the only way to cause the Q output of a NOR latch to change from 1
to 0?

4. If the NOR latch in Figure 5-12 were replaced by a NAND latch, why
wouldn’t the circuit work properly?

5-3 TROUBLESHOOTING CASE STUDY

The following two examples will present an illustration of the kinds of reasoning
used in troubleshooting a circuit containing a latch.

EXAMPLE
3-5 B

Analyze and describe the operation of the circuit in Figure 5-13.

Solution

The switch is used to set or clear the NAND latch to produce clean, bounce-free
signals at Q and Q. These latch outputs control the passage of the 1-kHz pulse

‘signal through to the AND outputs X, and Xz

When the switch moves to position A, the latch is set to Q = 1. This enables
the 1-kHz pulses to pass through to X, while the LOW at Q keeps Xz = 0. When
the switch moves to position B, the latch is cleared to Q = 0, which keeps X, = 0,
while the HIGH at Q enables the pulses to pass through to Xj.
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1 B LOW | Pulses
FIGURE 5-13 Examples 5-5 and 5-6.
EXAMPLE A technician tests the circuit of Figure 5-13 and records the observations shown in
5-6 Table 5-1. He notices that when the switch is in position B, the circuit functions

correctly, but in position A the latch does not set to the Q = 1 state. What are the
possible faults that could produce this malfunction?

TABLE 5-1
Switch SET CLEAR 0 R e A
Position @1-D (Z15) Z13) Z16) (Z23) Z26)

4 LOW HIGH LOW HIGH LOW Pulses
B HIGH LOW LOW HIGH LOW Pulses
Solution

There are several possibilities:

1. An internal open connection at Z1-1. This would prevent Q from responding to
the SET input.

2. An internal component failure in NAND gate Z1 that prevents it from respond-
ing properly.
3. The QO outpﬁt is stuck LOW. This could be caused by:
(2) Z1-3 internally shorted to ground
(b) Z1-4 internally shorted to ground
(¢) Z2-2 internally shorted to ground
(d) The Q node externally shorted to ground
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An ohmmeter check from Q to ground will determine if any of these conditions
are present. A visual check should reveal any external short.

What about Q internally or externally shorted to Ve.? A little thought will lead to
the conclusion that this could not be the fault. If Q were shorted to Vi, this would
not prevent the Q output from going HIGH when SET goes LOW. Since Q does not
go HIGH, this cannot be the fault. The reason that Q looks as if it is stuck HIGH is
that Qis stuck LOW, and that keeps O HIGH through the bottom NAND gate.

5-4 CLOCK SIGNALS AND CLOCKED FLIP-FLOPS

Digital systems can operate either asynchronously or synchronously. In asynchro-
nous systems, the outputs of logic circuits can change state any time one or more of
the inputs change. An asynchronous system is generally more difficult to design and
troubleshoot than a synchronous system.

In synchronous systems, the exact times at which any output can change states
are determined by a signal commonly called the clock. This clock signal is gener-
ally a rectangular pulse train or a square wave as shown in Figure 5-14. The clock
signal is distributed to all parts of the system, and most (if not all) of the system out-
puts can change state only when the clock makes a transition. The transitions (also
called edges) are pointed out in Figure 5-14. When the clock changes from a 0 to a
1, this is called the positive-going transition (PGT); when the clock goes from 1
to 0, this is the negative-going transition (NGT). We will use the abbreviations
PGT and NGT, since these terms appear so often throughout the text.

Most digital systems are principally synchronous (although there are always
some asynchronous parts), since synchronous circuits are easier to design and trou-
bleshoot. They are easier to troubleshoot because the circuit outputs can change
only at specific instants of time. In other words, almost everything is synchronized
to the clock-signal transitions.

The synchronizing action of the clock signals is accomplished through the use
of clocked flip-flops that are designed to change states on one or the other of the
clock’s transitions.

Clocked Flip-Flops

Several types of clocked FFs are used in a wide range of applications. Before we be-
gin our study of the different clocked FFs, we will describe the principal ideas that
are common to all of them.

FIGURE 5-14 Clock signals. Positive-going Negative-going
transition (PGT) transition (NGT)
T
O L

— Time
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FIGURE 5-15 Clocked FFs have o— a a
a clock input (CLK) that is active ~ Control : Control .
on either (a) the PGT or (b) the ~ ™PUS o = | inputs o - |
NGT. The control inputs
determine the effect of the active ; | b CLK I i > CLK
clock transition.
Q Q
CLK is activated CLK is activated
by a PGT by an NGT
(a) (b)

1. Clocked FFs have a clock input that is typically labeled CLK, CK, or CP. We will
normally use CLK, as shown in Figure 5-15. In most clocked FFs the CLK input is
edge-triggered, which means that it is activated by a signal transition; this is in-
dicated by the presence of a small triangle on the CLK input. This contrasts with
the latches, which are level-triggered.

Figure 5-15(a) is a FF with a small triangle on its CZLK input to indicate that this
input is activated only when a positive-going transition (PGT) occurs; no other
part of the input pulse will have an effect on the CILK input. In Figure 5-15(b)
the FF symbol has a bubble as well as a triangle on its CLK input. This signifies
that the CLK input is activated only when a negative-going transition occurs; no
other part of the input pulse will have an effect on the CLK input.

2. Clocked FFs also have one or more control inputs that can have various names,
depending on their operation. The control inputs will have no effect on Q until
the active clock transition occurs. In other words, their effect is synchronized
with the signal applied to CLK. For this reason they are called synchronous
control inputs.

For example, the control inputs of the FF in Figure 5-15(a) will have no ef-
fect on Q until the PGT of the clock signal occurs. Likewise, the control inputs in
Figure 5-15(b) will have no effect until the NGT of the clock signal occurs.

3. In summary, we can say that the control inputs get the FF outputs ready to
change, while the active transition at the CLK input actually triggers the change.
The control inputs control the WHAT (i.e., what state the output will go to); the
CILK input determines the WHEN.

Setup and Hold Times

Two timing requirements must be met if a clocked FF is to respond reliably to its
control inputs when the active CLK transition occurs. These requirements are illus-
trated in Figure 5-16 for a FF that triggers on a PGT.

The setup time, tg, is the time interval immediately preceding the active transi-
tion of the CLK signal during which the control input must be maintained at the
proper level. IC manufacturers usually specify the minimum allowable setup time
t(min). If this time requirement is not met, the FF may not respond reliably when
the clock edge occurs.

The hold time, ty, is the time interval immediately following the active transi-
tion of the CLK signal during which the synchronous control input must be main-
tained at the proper level. IC manufacturers usually specify the minimum acceptable
value of hold time #y(min). If this requirement is not met, the FF will not trigger re-

liably.
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FIGURE 5-16 Control inputs must be held stable for (a) a time & prior to active clock
transition and for (b) a time #y after the active block transition.

Thus, to ensure that a clocked FF will respond properly when the active clock
transition occurs, the control inputs must be stable (unchanging) for at least a time
interval equal to #(min) prior to the clock transition, and for at least a time interval
equal to #y(min) gfter the clock transition.

IC flip-flops will have minimum allowable % and %; values in the nanosecond
range. Setup times are usually in the range 5 to 50 ns whereas hold times are gen-
erally from 0 to 10 ns. Notice that these times are measured between the 50 percent
points on the transitions.
~ These timing requirements are very important in synchronous systems, because,
as we shall see, there will be many situations where the synchronous control inputs
to a FF are changing at approximately the same time as the CLK input.

(=

. What two types of inputs does a clocked FF have?
2. What is meant by the term edge-triggered?

3. True or failse: The CLK input will affect the FF output only when the active
transition of the control input occurs.

4. Define the setup time and hold time requirements of a clocked FF.

D=0 CLOCKED S-C FLIP-FLOP

Figure 5-17(a) shows the logic symbol for a clocked S-C flip-flop that is triggered
by the positive-going edge of the clock signal. This means that the FF can change
states only when a signal applied to its clock input makes a transition from 0 to 1.
The Sand Cinputs control the state of the FF in the same manner as described ear-
lier for the NOR gate latch, but the FF does not respond to these inputs until the oc-
currence of the PGT of the clock signal.

The truth table in Figure 5-17(b) shows how the FF output will respond to the
PGT at the CLK input for the various combinations of Sand Cinputs. This truth table
uses some new nomenclature. The up arrow () indicates that a PGT is required at
CILK; the label Q, indicates the level at Q prior to the PGT. This nomenclature is
often used by IC manufacturers in their IC data manuals.
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Inputs Output
S C CLK Q
&5 Q 0 0 1T Q, (no change)
1 0 T 1
o——1> CLK 0 1 0 0
T _ 1 1 T Ambiguous
; o—C Q
F'; trl()g]g'?rs Qg is output level prior to T of CLK.
2ragsi?ic:ge 1 of CLK produces no change in Q.
(a)
(b)
Voo | | |
| | |
S | | I
| | |
| | |
0 | | | | |
| | | | |
| | | | |
L | | T | |
| | | | |
C | | | | |
| | | | |
| | | I |
0 T T | T T
| | | | |
| | | | |
1
CLK A Y A Y A Y A Y Ay
0
a b c d e f g h i 1
I I | I |
| | | | |
1 | T
| |
Q | |
| |
| |
0 , .
—> Time
No Set Clear Set Set
change

{c)

FIGURE 5-17 (a) Clocked S-C flip-flop that responds only to the positive-going edge of a
clock pulse; (b) truth table; (¢) typical waveforms.

The waveforms in Figure 5-17(c¢) illustrate the operation of the clocked S-C flip-
flop. If we assume that the setup and hold time requirements are being met in all
cases, we can analyze these waveforms as follows:

1. Initially all inputs are 0 and the Q output is assumed to be 0; that is, Q, = 0.

2. When the PGT of the first clock pulse occurs (point @), the S and C inputs are
both 0, so the FF is not affected and remains in the Q = 0 state (i.e., Q = Qy.

3. At the occurrence of the PGT of the second clock pulse (point ¢), the § input is
now high, with C still low. Thus, the FF sets to the 1 state at the rising edge of
this clock pulse.

4. When the third clock pulse makes its positive transition (point e), it finds that
S = 0 and C = 1, which causes the FF to clear to the 0 state.
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5. The fourth pulse sets the FF once again to the Q = 1 state (point g because S =
1 and C = 0 when the positive edge occurs.

6. The fifth pulse also finds that § = 1 and € = 0 when it makes its positive-going
transition. However, Q is already high, so it remains in that state.

7. The § = C = 1 condition should not be used, because it results in an ambiguous
condition.

It should be noted from these waveforms that the FF is not affected by the neg-
ative-going transitions of the clock pulses. Also, note that the Sand Clevels have no
effect on the FF, except upon the occurrence of a positive-going transition of the
clock signal. The §and Cinputs are synchronous conirol inputs; they control which
state the FF will go to when the clock pulse occurs; the CLK input is the trigger in-
put that causes the FF to change states according to what the § and C inputs are
when the active clock transition occurs.

Figure 5-18 shows the symbol and the truth table for a clocked S-C flip-flop that
triggers on the negative-going transition at its CLK input. The small circle and trian-
gle on the CLK input indicates that this FF will trigger only when the CLK input goes
from 1 to 0. This FF operates in the same manner as the positive-edge FF except that
the output can change states only on the falling edge of the clock pulses (points &,
d, f, b, and j in Figure 5-17). Both positive-edge and negative-edge triggering FFs
are used in digital systems.

FIGURE 5-18 Clocked S-C flip- Inputs Output
flop that triggers on{yl on 1 ¢ E Q S C CLK Q
negative-going transitions. 0 l t S CLk 00 | Qg (no change)
120 1
. =~ 011 0
c Q 140 Ambiguous
Triggers on

negative edge

Internal Circuitry of the Edge-Triggered S-C Flip-Flop

A detailed analysis of the internal circuitry of a clocked FF is not necessary, since all
types are readily available as ICs. Although our main interest is in the FF's external
operation, our understanding of this external operation can be aided by taking a
look at a simplified version of the FF’s internal circuitry. Figure 5-19 shows this for
an edge-triggered S-C flip-flop.

The circuit contains three sections:

1. A basic NAND latch formed by NAND-3 and NAND-4
2. A pulse-steering circuit formed by NAND-1 and NAND-2

3. An edge-detector circuit

As shown in Figure 5-19, the edge detector produces a narrow positive-going
spike (CLK*) that occurs coincident with the active transition of the CLK input pulse.
The pulse-steering circuit “steers” the spike through to the SET or the CLEAR input
of the latch in accordance with the levels present at Sand C. For example, with § =
1 and C = 0, the CLK* signal is inverted and passed through NAND-1 to produce a
LOW pulse at the SET input of the latch that sets Q = 1. With § = 0, ¢ = 1, the CLK*
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FIGURE 5-19 Simplified version S o
of the internal circuitry for an
edge-triggered S-C flip-flop.

B [ R s

CLK detector

ce } CLEAR
- /) - -
YT g
Pulse-steering NAND latch
circuit

signal is inverted and passed through NAND-2 to produce a low pulse at the CLEAR
input of the latch that resets Q = 0.

Figure 5-20(a) shows how the CLK* signal is generated for edge-triggered FFs
that trigger on a PGT. The INVERTER produces a delay of a few nanoseconds so
that the transitions of CLK occur a little bit after those of CLK. The AND gate pro-
duces an output spike that is HIGH only for the few nanoseconds when CLK and
CIK are both HIGH. The result is a narrow pulse at CLK*, which occurs on the PGT
of CLK The arrangement of Figure 5-20(b) likewise produces CLK* on the NGT of
CIK for FFs that are to trigger on a NGT.

Since the CLK* signal is HIGH for only a few nanoseconds, Q is affected by the
levels at Sand C only for a short time during and after the occurrence of the active
edge of CLK. This is what gives the FF its edge-triggered property.

CLK CLK
CLK | CLK —
CLK * j CLK*
QO

CLK ————— —— CLK =—————— —

CLK  —————

—

CLK* I-

FIGURE 5-20 Implementation of edge-detector circuits used in edge-triggered flip-flops:
(@) PGT; (b) NGT. The duration of the CLK* pulses is typically 2-5 nanoseconds.

CLK*
(a) (b)
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S BRUGUTRGITITICE 1. Suppose that the waveforms of Figure 5-17(c) are applied to the inputs of the

FF of Figure 5-18. What will happen to Q at point b? At point f? At point 5?
2. Explain why the §and C inputs affect Q only during the active transition of
CIK.

5-0 CLOCKED J-K FLIP-FLOP

Figure 5-21(a) shows a clocked J-K flip-flop that is triggered by the positive-going
edge of the clock signal. The Jand K inputs control the state of the FF in the same
ways as the S and C inputs do for the clocked S-C flip-flop except for one major
difference: the ] = K = 1 condition does not result in an ambiguous output. For this
1, 1 condition, the FF will always go to its opposite state upon the positive transi-
tion of the clock signal. This is called the toggle mode of operation. In this mode,
if both Jand K are left HIGH, the FF will change states (toggle) for each PGT of the
clock.

The truth table in Figure 5-21(a) summarizes how the J-K flip-flop responds to
the PGT for each combination of Jand K. Notice that the truth table is the same as
for the clocked S-C flip-flop (Figure 5-17) except for the /= K = 1 condition. This

o J QFe J Ko | GLK Q
0 0 T Qq (no change)
_ﬂ_ — CLk e
_ 0 1 T 0
o——— K QpP——e 1 1 T Q (toggles)
(a)
1 T T T [
J I ! I I
0 _.._'J ! | | | |
I I | I
: ! : [ [ !
| ( | |
1 T ] I | ] ]
K : | : ! ! |
o0 — | } | |
| I ! | I I
! ! l [ [ |
CLK A A A A A A
0
a b [ d e f g h i j k — Time
' [ [ I [ [
| | |
] — , ‘ —
I [
Q | :
Clear Toggle No Set Toggle Toggle
change

(b)

FIGURE 5-21 (a) Clocked J-K flip-flop that responds only to the positive edge of the clock;
(b) waveforms.
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FIGURE 5-22 J-K flip-flop that
triggers only on negative-going
transitions.
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condition results in Q = Q,, which means that the new value of Q will be the in-
verse of the value it had prior to the PGT; this is the toggle operation.

The operation of this FF is illustrated by the waveforms in Figure 5-21(b). Once
again we assume that the setup and hold time requirements are being met.

1. Initially all inputs are 0, and the Q output is assumed to be 1; that is, Q, = 1.

2. When the positive-going edge of the first clock pulse occurs (point a), the J = 0,
K =1 condition exists. Thus, the FF will be cleared to the Q = 0 state.

3. The second clock pulse finds /= K= 1 when it makes its positive transition
(point ¢). This causes the FF to toggle to its opposite state, Q = 1.

4. At point e on the clock waveform, / and K are both 0, so that the FF does not
change states on this transition.

5. At point g, /= 1 and K = 0. This is the condition that sets Q to the 1 state. How-
ever, it is already 1, and so it will remain there.

6. At point i, ] = K = 1, and so the FF toggles to its opposite state. The same thing
occurs at point k.

Note from these waveforms that the FF is not affected by the negative-going
edge of the clock pulses. Also, the Jand K input levels have no effect except upon
the occurrence of the PGT of the clock signal. The Jand K inputs by themselves
cannot cause the FF to change states.

Figure 5-22 shows the symbol for a clocked J-K flip-flop that triggers on the
negative-going clock-signal transitions. The small circle on the CLK input indicates
that this FF will trigger when the CLK input goes from 1 to 0. This FF operates in the
same manner as the positive-edge FF of Figure 5-21 except that the output can
change states only on negative-going clock-signal transitions (points b, d, f; b, and
7. Both polarities of edge-triggered J-K flip-flops are in common usage.

— Q J K Q

0 0 Qo (no change)
o—(Cp CLK 1 0 1

0 1 0
o— K Q 1 1 Qg (toggles)

The J-K flip-flop is much more versatile than the S-C flip-flop because it has no
ambiguous states. The /= K = 1 condition, which produces the toggling operation,
finds extensive use in all types of binary counters. In essence, the J-K flip-flop can
do anything the S-C flip-flop can do plus operate in the toggle mode.

Internal Circuitry of the Edge-Triggered J-K Flip-Flop

A simplified version of the internal circuitry of an edge-triggered J-K flip-flop is
shown in Figure 5-23. It contains the same three sections as the edge-triggered S-C
flip-flop (Figure 5-19). In fact, the only difference between the two circuits is that the
Qand Q outputs are fed back to the pulse-steering NAND gates. This feedback con-
nection is what gives the J-K flip-flop its toggle operation for the / = K = 1 condition.

Let’s examine this toggle condition more closely by assuming that /= K= 1
and that Q is sitting in the LOW state when a C/ZK pulse occurs. With Q = 0 and
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J@

CLK

_J—I_ Edge

detector

Ke

Pulse-steering NAND latch
circuit

FIGURE 5-23 Internal circuit of the edge-triggered J-K flip-flop.

QO = 1, NAND gate 1 will steer CLK* (inverted) to the SET input of the NAND latch
to produce Q = 1. If we assume that Q is HIGH when a CIK pulse occurs, NAND
gate 2 will steer CLK* (inverted) to the CLEAR input of the latch to produce Q = 0.
Thus, Q always ends up in the opposite state.

In order for the toggle operation to work as described above, the CLK* pulse
must be very narrow. It must return to 0 before the Q and Q outputs toggle to their
new values; otherwise the new values of Q and Q will cause the CLK* pulse to tog-
gle the latch outputs again.

Review Questions i 1 Tmé or faise: A J-K flip-flop can be used as an S-C flip-flop, but an S-C flip-flop

cannot be used as a J-K flip-flop.
2. Does a J-K flip-flop have any ambiguous input conditions?

3. What /K input condition will always set Q upon the occurrence of the active
CIK transition?

5=-7 CLOCKED D FLIP-FLOP

Figure 5-24(a) shows the symbol and the truth table for a clocked D flip-flop that
triggers on a PGT. Unlike the S-C and J-K flip-flops, this flip-flop has only one syn-
chronous control input, D, which stands for data. The operation of the D flip-flop is
very simple: Q will go to the same state that is present on the D input when a PGT
occurs at CLK. In other words, the level present at D will be stored in the flip-flop at
the instant the PGT occurs. The waveforms in Figure 5-24(b) illustrate this opera-
tion.

Assume that Q is initially HIGH. When the first PGT occurs at point 4, the D in-
put is LOW; thus, Q will go to the 0 state. Even though the D input level changes
between points @ and b, it has no effect on Q; Q is storing the LOW that was on D
at point a. When the PGT at b occurs, Q goes HIGH since D is HIGH at that time.
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FIGURE 5-24 () D flip-flop that
triggers only on positive-going
transitions; (b) waveforms.

J l_ &—— CLK
1
D _,_
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0
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1
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Q stores this HIGH until the PGT at point ¢ causes Q to go LOW, since D is LOW at
that time. In a similar manner, the Q output takes on the levels present at D when
the PGTs occur at points d, e, f, and g. Note that Q stays HIGH at point e because D
is still HIGH.

Again, it is important to remember that Q can change only when a PGT occurs.
The D input has no effect between PGTs.

A negative-edge-triggered D flip-flop operates in the same way just described
except that Q will take on the value of D when a NGT occurs at CLK. The symbol
for the D flip-flop that triggers on NGTs will have a bubble on the CLK input.

],.

s
.

R S
-
Rk B

Implementation of the D Flip-Flop

An edge-triggered D flip-flop is easily implemented by adding a single INVERTER to
the edge-triggered J-K flip-flop as shown in Figure 5-25. If you try both values of D,
you should see that Q takes on the level present at D when a PGT occurs. The same
can be done to convert a S-C flip-flop to a D flip-flop.

FIGURE 5-25 Edge-triggered D |

flip-flop implementation from a !

JK flip-flop. D o———¢- J Q
|

o > CLK

I

(a) (b)
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FIGURE 5-26 Parallel transfer of
binary data using D flip-flops.

Review Questions
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D 01 _. Ol = X*
X > —Opclk Q,F—e
Combinational ] Y .
IOgiC » D 02 _. 02 = Y
circuit
Z -
—OPCLK Q,—e

D 03_.03=Z*

]
TRANSFER I t _
0 o————(OPClk Q;—@

*After occurrence of NGT

Parallel Data Transfer

At this point you may well be wondering about the usefulness of the D flip-flop,
since it appears that the Q output is the same as the D input. Not quite; remember,
Q takes on the value of D only at certain time instances, and so it is not identical to
D (e.g., see the waveforms in Figure 5-24).

In most applications of the D flip-flop, the Q output must take on the value at
its D input only at precisely defined times. One example of this is illustrated in Fig-
ure 5-26. Outputs X, Y, Z from a logic circuit are to be transferred to FFs Q,, ,, and
Qs for storage. Using the D flip-flops, the levels present at X, ¥, and Z will be trans-
ferred to Q,, &, and Qs, respectively, upon application of a TRANSFER pulse to the
common CIK inputs. The FFs can store these values for subsequent processing. This
is an example of parallel transfer of binary data; the three bits X, ¥, and Z are all
transferred simultaneously.

1. What will happen to the Q waveform in Figure 5-24(b) if the D input is held
permanently LOW?

2. True or false: The Q output will equal the level at the D input at all times.
3. Can J-K FFs be used for parallel data transfer?

5=8 D LATCH (TRANSPARENT LATCH)

The edge-triggered D flip-flop uses an edge-detector circuit to ensure that the out-
put will respond to the D input only when the active transition of the clock occurs.
If this edge detector is not used, the resultant circuit operates somewhat differently.
It is called a D latch and has the arrangement shown in Figure 5-27(a).
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NAND LATCH

Inputs Output
EN D Q
0 X -}l Qg (no change)
ENABLE 1 0 0
(EN) 1 1 1
"X" indicates "don't care"
Q, is state Q just

prior to EN going LOW

(a) (b)

(c)

FIGURE 5-27 D latch: (a) structure; (b) truth table; (¢) logic symbol.

The circuit contains the NAND latch and the steering NAND gates 1 and 2 with-
out the edge-detector circuit. The common input to the steering gates is called an
enable input (abbreviated EN) rather than a clock input because its effect on the Q
and Q outputs is not restricted to occurring only on its transitions. The operation of
the D latch is described as follows:

1. When EN is HIGH, the D input will produce a LOW at either the SET or the
CLEAR inputs of the NAND latch to cause Q to become the same level as D. If D
changes while EN is HIGH, Q will follow the changes exactly. In other words,
while EN = 1, the Q output will look exactly like Dj; in this mode, the D latch is
said to be “transparent.”

2. When EN goes LOW, the D input is inhibited from affecting the NAND latch since
the outputs of both steering gates will be held HIGH. Thus, the Q and Q outputs
will stay at whatever level they had just before EN went LOW. In other words, the
outputs are “latched” to their current level and cannot change while EN is LOW
even if D changes.

This operation is summarized in the truth table in Figure 5-27(b). The logic sym-
bol for the D latch is given in Figure 5-27(c). Note that even though the EN input
operates much like the CLK input of an edge-triggered FF, there is no small triangle
on the EN input. This is because the small triangle symbol is used strictly for inputs
that can cause an output change only when a transition occurs. The D latch is not
edge-triggered.
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Determine the Q waveform for a D latch with the EN and D inputs of Figure 5-28.
Assume that Q = 0 initially.

FIGURE 5-28 Waveforms for  gn
Example 5-7 showing the two
modes of operation of the

|

transparent D latch. b ;
ul

|

|

ul
|

Q
I
T T, T3 T4
H_J LW_J W“‘J N J J
g VY
"Latched" "Transparent" ‘"Latched" "Transparent” ‘“Latched"
atQ =0 Q=D atQ =1 Q=D atQ =0
Solution

Prior to time T3, EN is LOW, so that Q is “latched” at its current 0 level and cannot
change even though D is changing. During the interval 7; to 7, EN is HIGH so
that Q will follow the signal present at D. Thus, Q goes HIGH at T; and stays there
since D is not changing. When EN returns LOW at 7,, Q will latch at the HIGH
level that it has at 75 and will remain there while EN is LOW.

At T; when EN goes HIGH again, Q will follow the changes in the D input
until 74 when EN returns LOW. During the interval 73 to T, the D latch is
“transparent” since the variations in D go through to the output Q. At 7; when EN
goes LOW, Q will latch at the 0 level since that is its level at 7;. After T; the
variations in D will have no effect on Q since it is latched (i.e., EN = 0).

115 1. Describe how a D latch operates differently from an edge-triggered D flip-
flop.
2. True or false: A D latch is in its transparent mode when EN = 0.
3. True or false: In a D latch, the D input can affect Q only when EN = 1.

5-9 ASYNCHRONOUS INPUTS

For the clocked flip-flops that we have been studying, the S, C, J, K, and D inputs
have been referred to as control inputs. These inputs are also called synchronous in-
puts, because their effect on the FF output is synchronized with the CLK input. As
we have seen, the synchronous control inputs must be used in conjunction with a
clock signal to trigger the FF.

Most clocked FFs also have one or more asynchronous inputs which operate
independently of the synchronous inputs and clock input. These asynchronous in-
puts can be used to set the FF to the 1 state or clear the FF to the O state af any time,
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l PRESET

PRESET | CLEAR FF response
*—J Qp———=e 1 1 Clocked operation*
0 1 Q = 1 (regardless of CLK)
—Cp> CLK 1 0 Q = 0 (regardless of CLK)
0 0 Not used
— K QpF—e
*Q will respond to J, K, and CLK

TCLEAR

FIGURE 5-29 Clocked J-K flip-flop with asynchronous inputs.

regardless of the conditions at the other inputs. Stated in another way, the asynchro-
nous inputs are override inputs, which can be used to override all the other inputs
in order to place the FF in one state or the other.

Figure 5-29 shows a J-K flip-flop with two asynchronous inputs designated as
PRESET and CLEAR. These are active-LOW inputs, as indicated by the bubbles on
the FF symbol. The accompanying truth table summarizes how they affect the FF
output. Let’s examine the various cases.

B PRESET = CLEAR = 1. The asynchronous inputs are inactive and the FF is free to
respond to the J, K, and CLK inputs; in other words, the clocked operation can
take place.

B PRESET = 0; CLEAR = 1. The PRESET is activated and Q is immediately set to 1
no matter what conditions are present at the /, K, and CLK inputs. The CLK input
cannot affect the FF while PRESET = 0.

B PRESET = 1; CLEAR = 0. The CLEAR is activated and Q is immediately cleared to
0 independent of the conditions on the /, K, or CLK inputs. The CLK input has no
effect while CLEAR = 0.

B PRESET = CLEAR = 0. This condition should not be used, since it can result in
an ambiguous response.

It is important to realize that these asynchronous inputs respond to dc levels.
This means that if a constant 0 is held on the PRESET input, the FF will remain in
the Q = 1 state regardless of what is occurring at the other inputs. Similarly, a con-
stant LOW on the CLEAR input holds the FF in the Q = 0 state. Thus, the asynchro-
nous inputs can be used to hold the FF in a particular state for any desired interval.
Most often, however, the asynchronous inputs are used to set or clear the FF to the
desired state by application of a momentary pulse.

Many clocked FFs that are available as ICs will have both of these asynchronous
inputs; some will have only the CLEAR input. Some FFs will have asynchronous in-
puts that are active-HIGH rather than active-LOW. For these FFs the FF symbol
would not have a bubble on the asynchronous inputs.

Designations for Asynchronous Inputs

IC manufacturers have not agreed on what nomenclature is used for these asyn-
chronous inputs. The most common designations are PRE (short for PRESET) and
CIR (short for CLEAR). The designations Sj, (direct SET) and R;, (direct RESET) are
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also used. From now on, we will use the labels PRE and CIR to represent the asyn-
chronous inputs, since these seem to be the most commonly used labels. When
these asynchronous inputs are active-LOW, as they generally are, we will use the
overbar to indicate their active-LOW status, that is, PRE and CLR.

Although most IC flip-flops have at least one or more asynchronous inputs,
there are some circuit applications where they are not used. In such cases they are
held permanently at their inactive level. Often, in our use of FFs throughout the re-
mainder of the text, we will not show a FF’s unused asynchronous inputs; it will be
assumed that they are permanently connected to their inactive logic level.

Figure 5-30(a) shows the symbol for a J-K FF that responds to a NGT on its clock
input and has active-LOW asynchronous inputs. Before proceeding with the
example, take note of the way the inputs are labeled. First, note that the clock
signal applied to the FF is labeled CIK (the overbar indicates that this signal is
active on the NGT) whereas on the other side of the bubble (inside the block) it is
labeled CIK. Likewise, the external active-LOW asynchronous inputs are labeled

CLK

+5V PRE

°
O—e
|
I

[ | | | !
[ | | | !
I 1 1 L 1
PRE | I | ! |
J PRE qle 0 | I [ I [
f (I | | I |
. | [ l ! |
CLK &—+—(C> CLK o 1 : : + + I t
CLR - I | I [
= I [ [ | I
—IK crO® 0 I ! I I
- ! [ | I 1
1 by | I

Q I_l |

_ 0 ! .
CLR Iy | Lo |
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(a)
Point Operation

Synchronous toggle on NGT of CLK
Asynchronous set on PRE = 0
Synchronous toggle

Synchronous toggle
Asynchronous clear on CLR = 0
CLR over-rides the NGT of CLK
Synchronous toggle

Q -0 QO T o

(b}

FIGURE 5-30 Waveforms for Example 5-9 showing how a clocked flip-flop responds to
asynchronous inputs.
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PRE and CLR, whereas inside the block on the other side of the bubble, they are
labeled PRE and CIR. The important thing to remember is that the presence of the
bubble on an input means that the input responds to a logic LOW signal.

The Jand K inputs are shown tied HIGH for this example. Determine the Q
output in response to the input wave forms shown in Figure 5-30(a). Assume that
Q is initially HIGH.

Solution

Initially, PRE and CLR are in their inactive HIGH state, so that they will have no
effect on Q. Thus, when the first NGT of the CIK signal occurs at point a, Q will
toggle to its opposite state; remember, / = K = 1 produces the toggle operation.

At point b, the PRE input is pulsed to its active-LOW state. This will
immediately set Q = 1. Note that PRE produces Q = 1 without waiting for a NGT
at CLK. The asynchronous inputs operate independently of CIK.

At point ¢, the NGT of CLK will again cause Q to toggle to its opposite state.
Note that PRE has returned to its inactive state prior to point c. Likewise, the NGT
of CIK at point d will toggle Q back HIGH.

At point e, the CLR input is pulsed to its active-LOW state and will
immediately clear Q = 0. Again, it does this independently of CLK.

The NGT of CIK at point f will not toggle Q, because the CLR input is still
active. The LOW at CLR overrides the CIK input and holds Q = 0.

When the NGT of CILK occurs at point g, it will toggle Q to the HIGH state
since neither asynchronous input is active at that point.
These steps are summarized in Figure 5-30(b).

1. How does the operation of an asynchronous input differ from that of a syn-
chronous input?
2. Can a D flip-flop respond to its D and CLK inputs while PRE = 1?

3. List the conditions necessary for a positive-edge-triggered J-K flip-flop with
active-LOW asynchronous inputs to toggle to its opposite state.

IEEE/ANSI SYMBOLS

Figure 5-31(a) shows the IEEE/ANSI symbol for a negative-edge-triggered J-K flip-
flop with asynchronous inputs. Note the right triangle on the CLK input to indicate
that it is activated by a NGT. Recall that in the IEEE/ANSI symbols, a right triangle
has the same meanings as the small bubble in the traditional symbols. Also note that
the clock input is labeled “C” inside the rectangle. IEEE/ANSI always uses a “C” to
denote any input that controls when other inputs will affect the output. The PRE
and CIR inputs are active-LOW as indicated by the right triangles on these inputs.
IEEE/ASNI also uses the labels “S” and “R” inside the rectangle to denote the asyn-
chronous SET and RESET operations, which are the same as PRESET and CLEAR, re-
spectively.

Figure 5-31(b) shows the IEEE/ANSI logic symbol for an IC that is part of the
74LS series of TTL devices. The 74LS112 is a dual negative-edge-triggered J-K flip-
flop with preset and clear capabilities. It contains two J-K flip-flops, like the one


Albustani
Rechteck


FIGURE 5-31

Section 3-10 / IEEE/ANSI Symbols e 209

_ 74LS112
PRE o
1PRE &—DNs e 1Q
1) &—1J
S 10LK e—DN ¢
*—J ——eQ 1K &——— 1K
AR e——DN [~ ¢1Q
ik e—DN ¢ 1CLR R
2PRE @—N ——® 2Q
—— K > o0 2] @——
R
2CLK @ D>
2K @————
Ly 2CTR &—D> RN
CLR
(a) {b)

IEEE/ANSI symbols for (a) a single edge-triggered J-K flip-flop and (b) an

actual IC (74LS112 dual negative-edge-triggered J-K flip-flop).

symbolized in Figure 5-31(a). Note how the inputs and outputs are numbered. Also
note that the input labels inside the rectangles are shown only for the top FFE. It is
understood that the inputs to the bottom FF are in the same arrangement as the top
one. This same IC symbol applies to the CMOS 74HC112.

Figure 5-32(a) is the IEEE/ANSI symbol for a positive-edge-triggered D flip-flop
with asynchronous inputs. There is no right triangle on the clock input, since this FF
is clocked by PGTs.

74HC175
- Clr o—D[R
PRE CLK &——>C
Common-control block/_y-l r—
f——= 1Q
1De———— 1D
S : _
———D e Q 1a
l—-—® 2Q
2D @——— -
[~ e20
CLK &———>C i RN L e30Q
3D @———— ~
S ¢30
® 4Q
. 4D @l
CLR ™~ 40
(a)
(b)

FIGURE 5-32 IEEE/ANSI symbols for (a) a single edge-triggered D flip-flop and (b) an
actual IC (74HC175 quad flip-flop with common clock and clear).
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Figure 5-32(b) is the IEEE/ANSI symbol for a 74HC175 IC, which contains four
D flip-flops that share a common CIK input and a common CIR input. The FFs do
not have a PRE input. This symbol contains a separate rectangle to represent each
FF, and a special common-control block, which is the notched rectangle on top.
The common-control block is used whenever an IC has one or more inputs that are
common to more than one of the circuits on the chip. For the 74HC175, the CLK and
CIR inputs are common to all four of the D flip-flops on the IC. This means that a
PGT on CILK will cause each Q output to take on the level present at its D input; it
also means that a LOW on CLR will clear all Q outputs to the LOW state.

1. Explain the meaning of the two different triangles that can be part of the
IEEE/ANSI symbology at a clock input.

2. Describe the meaning of the common-control block.

5-11 FLIP-FLOP TIMING CONSIDERATIONS

Manufacturers of IC flip-flops will specify several important timing parameters and
characteristics that must be considered before a FF is used in any circuit application.
We will describe the most important of these and then give some actual examples of
specific IC flip-flops from the TTL and CMOS logic families.

Setup and Hold Times

The setup and hold times have already been discussed, and you may recall from Sec-

tion 5-4 that they represent requirements that must be met for reliable FF triggering.

The manufacturer’s IC data sheet will always spe¢ify the minimum values of &5 and ;.
k

i

Propagation Delays
Whenever a signal is to change the state of a FF’s output, there is a delay from the
time the signal is applied to the time when the output makes its change. Figure 5-33
illustrates the propagation delays that occur in response to a positive transition on
the CLK input. Note that these delays are measured between the 50 percent points

FIGURE 5-33 FF propagation ! !

delays.

CLK 50%

tPLH teuL
Delay going from Delay going from
LOW to HIGH HIGH to LOW

(a) (b)
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on the input and output waveforms. The same types of delays occur in response to
signals on a FF's asynchronous inputs (PRESET and CLEAR). The manufacturers’
data sheets usually specify propagation delays in response to all inputs, and they
usually specify the maximum values for #;;; and fpyy.

Modern IC flip-flops have propagation delays that range from a few nanosec-
onds to around 100 ns. The values of %y and #yy; are generally not the same, and
they increase in direct proportion to the number of loads being driven by the Q out-
put. FF propagation delays play an important part in certain situations that we will
encounter later.

Maximum Clocking Frequency, fyax

This is the highest frequency that may be applied to the CLK input of a FF and still
have it trigger reliably. The fyax limit will vary from FF to FF even with FFs having
the same device number. For example, the manufacturer of the 7470 J-K flip-flop IC
tests many of these FFs and may find that the fyax values fall in the range 20 to 35
MHz. He will then specify the minimum fy4x as 20 MHz. This may seem confusing,
but a little thought should make it clear that what the manufacturer is saying is that
he cannot guarantee that the 7470 FF that you put in your circuit will work above
20 MHz; most of them will, but some of them will not. If you operate them below
20 MHz, however, he guarantees that they will all work.

Clock Pulse HIGH and LOW Times

The manufacturer will also specify the minimum time duration that the CLK signal
must remain LOW before it goes HIGH, sometimes called #(D), and the minimum
time that CLK must be kept HIGH before it returns LOW, sometimes called (.
These times are defined in Figure 5-34(a). Failure to meet these minimum time re-
quirements can result in unreliable triggering. Note that these time values are mea-
_sured between the halfway points on the signal transitions.

\\f
Asynchronous Active Pulse Width

The manufacturer will also specify the minimum time duration that a PRESET or
CLEAR input must be kept in its active state in order to set or clear the FF reliably.
Figure 5-34(b) shows k(D) for active-LOW asynchronous inputs.

1 PRE 1
CLOCK M or. U
0 ) I CLR o |

|
| |
| F— (L) =~ | |
= typy(H) > | ety —>

(a) (b}

FIGURE 5-34 (a) Clock LOW and HIGH times; (b) asynchronous pulse width.
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Clock Transition Times

For reliable triggering, the clock waveform transition times (rise and fall times)
should be kept very short. If the clock signal takes too long to make the transitions
from one level to the other, the FF may trigger erratically or not at all. Manufacturers
usually do not list a maximum transition time requirement for each FF integrated cir-
cuit. Instead, it is usually given as a general requirement for all ICs within a given
logic family. For example, the transition times should generally be <50 ns for TTL
devices and =200 ns for CMOS. These requirements will vary among the different
manufacturers and among the various subfamilies within the broad TTL and CMOS
logic families.

Actual ICs

As practical examples of these timing parameters, let’s take a look at several actual
integrated-circuit FFs. In particular, we will look at the following ICs:

B 7474 Dual edge-triggered D flip-flop (standard TTL)

n 74LS112  Dual edge-triggered J-K flip-flop (low-power Schottky TTL)
B 74C74 Dual edge-triggered D flip-flop (metal-gate CMOS)

B 74HC112 Dual edge-triggered J-K flip-flop (high-speed CMOS)

Table 5-2 lists the various timing values for each of these FFs as they appear in
the manufacturers’ data books. All of the listed values are minimum values except
for the propagation delays, which are maximum values. Examination of Table 5-2
reveals two interesting points.

TABLE 5-2  Flip-flop timing

values (in nanoseconds). TTL CMOS

7474 7418112 74C74 74HC112

5 20 20 60 25
| by 5 0 0 0
b from CIKto Q 40 24 200 31
toiy  from CIKto Q 25 16 200 31
tr.  from CIRto Q 40 24 225 41
by  from PRE to Q 25 16 225 41
tAD) CLKLOW time 37 15 100 25
tw(F) CLK HIGH time 30 20 100 25
tw(D) at PRE or CIR 30 15 60 25
JSuax in MHz 15 30 5 20

1. All of the FFs have very low f; requirements; this is typical of most modern edge-
triggered FFs.

2. The 74HC series of CMOS devices has timing values that are comparable to those
of the TTL devices. The 74C series is much slower than the 74HC series.
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From Table 5-2 determine the following.

(@) Assume that Q = 0. How long can it take for Q to go HIGH when a PGT occurs
at the CLK input of a 74747

(b) Assume that Q = 1. How long can it take for Q to go LOW in response to the
CLR input of a 74HC112? '

(c) What is the narrowest pulse that should be applied to the CLR input of the
7415112 FF to clear Q reliably?

(d) Which FF in Table 5-2 requires that the control inputs remain stable afterthe oc-
currence of the active clock transition?

(e) For which FFs must the control inputs be held stable for a minimum time prior
to the active clock transition?

Solution

(@) The PGT will cause Q to go from LOW to HIGH. The delay from CLKto Q is
listed as foy = 25 ns for the 7474.

(b) For the 74HC112 the time required for Q to go from HIGH to LOW in response
to the CLR input is listed as #py; = 41 ns.

() For the 7415112 the narrowest pulse at the CLR input is listed as (L) = 15 ns.
(d) The 7474 is the only FF in Table 5-2 that has a nonzero hold time requirement.

(e) All of the FFs have a nonzero setup time requirement.

1. Which FF timing parameters indicate the time it takes the Q output to respond
to an input?

2. True or false: A FF that has an fyax rating of 25 MHz can be reliably triggered
by any CLK pulse waveform with a frequency below 25 MHz.

~

5-12 POTENTIAL TIMING PROBLEM IN FF CIRCUITS

In many digital circuits, the output of one FF is connected either directly or through
logic gates to the input of another FF, and both FFs are triggered by the same clock

= signal. This presents a potential timing problem. A typical situation is illustrated in
Figure 5-35, where the output of Q, is connected to the Jinput of Q, and both FFs
are clocked by the same signal at their CLK inputs.

The potential timing problem is this: since Q; will change on the NGT of the
clock pulse, the /, input of Q, will be changing as it receives the same NGT. This
could lead to an unpredictable response at Q,.

Let’s assume that initially Q; = 1 and Q, = 0. Thus, the Q, FF has J; = K; = 1,
and Q, has , = Q; = 1, K, = 0 prior to the NGT of the clock pulse. When the NGT
occurs, Q; will toggle to the LOW state, but it will not actually go LOW until after its
propagation delay, #y;. The same NGT will reliably clock Q, to the HIGH state pro-
vided that %y is greater than Q,’s hold time requirement, #;. If this condition is not
met, the response of Q, will be unpredictable.
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FIGURE 5-35 Q, will properly CLOCK
respond to the level present at Q; 1o— Q; J2 Q,
prior to the NGT of CIK, | |
provided that Q,’s hold time P CLK —OP> CLK
i t, &y, is less th: ’ — —
requ1rern.en , hy, is less than Q;’s : 9 3, % 3,
propagation delay. I
1
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Fortunately, all modern edge-triggered FFs have hold time requirements that are
5 ns or less; most have %; = 0, which means that they have no hold time require-
ment. For these FFs, situations like that in Figure 5-35 will not be a problem.

Unless stated otherwise, in all of the FF circuits that we encounter throughout
the text, we will assume that the FF’s hold time requirement is short enough to re-
spond reliably according to the following rule:

The FF output will go to a state determined by the logic levels present
at its synchronous control inputs just prior to the active clock tran-
sition.

If we apply this rule to Figure 5-35, it says that Q, will go to a state determined by
the /, = 1, K, = 0 condition that is present just prior to the NGT of the clock pulse.
The fact that /, is changing in response to the same NGT has no effect.

Determine the Q output for a negative-edge-triggered J-K flip-flop for the input
waveforms shown in Figure 5-36. Assume that ; = 0 and that Q = 0 initially.

Solution

The FF will respond only at times 15, Ty, Tg, and Tg. At 7,, Q will respond to the
J= K= 0 condition present just prior to T,. At T;, Q will respond to the /=1,
K = 0 condition present just prior to 7;. At Ts, Q will respond to the /=0, K=1
condition present just prior to Tg. At Tg, Q respondsto /= K= 1.
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FIGURE 5-36 Example 5-10. J —
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5-13 MASTER/SLAVE FLIP-FLOPS

Before the development of edge-triggered FFs with little or no hold-time require-
ments, timing problems such as that in Figure 5-35 were often handled by using
a class of FFs called master/slave FFs. A master/slave FF actually contains two
FFs—a master and a slave. On the rising edge of the CLK signal, the levels on the
control inputs (D, J, K) are used to determine the output of the master. When the
CIK signal goes LOW, the state of the master is transferred to the slave, whose out-
puts are Qand Q. Thus, Qand Q change just after the NGT of the clock. These mas-
ter/slave FFs function very much like the negative-edge-triggered FFs except for one
major disadvantage: the control inputs must be held stable while CIK is HIGH, or
unpredictable operation may occur. This problem with master/slave FFs has been
overcome with an improved master/slave version called a master/slave with daia
lockout.

The master/slave FF has become obsolete, although you may encounter it in
older equipment. Examples of this type are the standard TTL 7473, 7476, and 74107,
and the data lockout versions, 74110 and 74111. The newer IC technologies (74LS,
74AS, 74ALS, 74HC, 74HCT) do not include any master/slave FFs in their series. In
fact, the 74LS76 and 74LS107 have been manufactured as edge-triggered FFs even
though their standard 74 series counterparts are master/slave.

For most purposes, if you encounter a master/slave FF in a piece of equipment,
you can analyze its operation like a negative-edge-triggered FF.

0-14 FLIP-FLOP APPLICATIONS

Edge-triggered (clocked) flip-flops are versatile devices that can be used in a wide
variety of applications including counting, storing of binary data, transferring binary
data from one location to another, and many more. Almost all of these applications
utilize the FF’s clocked operation. Many of them fall into the category of sequential
circuits. A sequential circuit is one in which the outputs follow a predetermined se-
quence of states, with a new state occurring each time a clock pulse occurs. We will
introduce some of the basic applications in the following sections, and we will ex-
pand on them in subsequent chapters.
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5-13 FLIP-FLOP SYNCHRONIZATION

Debounced
switch

CLOCK

Most digital systems are principally synchronous in their operation in that most of
the signals will change states in synchronism with the clock transitions. In many
cases, however, there will be an external signal that is not synchronized to the
clock; in other words, it is asynchronous. Asynchronous signals often occur as a re-
sult of a human operator’s actuating an input switch at some random time relative
to the clock signal. This randomness can produce unpredictable and undesirable re-
sults. The following example illustrates how a FF can be used to synchronize the ef-
fect of an asynchronous input.

Figure 5-37(a) shows a situation where input signal A is generated from a
debounced switch that is actuated by an operator (a debounced switch was first
introduced in Example 5-2). A goes HIGH when the operator actuates the switch
and goes LOW when the operator releases the switch. This A4 input is used to
control the passage of the clock signal through the AND gate so that clock pulses

" appear at output X only as long as A is HIGH.

LT — '\ F)mal/"

pulses

(b)

(a)

FIGURE 5-37 Asynchronous signal A can produce partial pulses at X.

The problem with this circuit is that A4 is asynchronous; it can change states at
any time relative to the clock signal because the exact times when the operator
actuates or releases the switch are essentially random. This can produce partial
clock pulses at output X if either transition of 4 occurs while the clock signal is
HIGH, as shown in the waveforms of Figure 5-37(b).

This type of output is often not acceptable, so a method for preventing the
appearance of partial pulses at X must be developed. One solution is shown in
Figure 5-38(a). Describe how this circuit solves the problem, and draw the X
waveform for the same situation as in Figure 5-37(b).

Solution

The A signal is connected to the D input of FF Q, which is clocked by the NGT of
the clock signal. Thus, when A goes HIGH, Q will not go HIGH until the next
NGT of the clock at time 7;. This HIGH at Q will enable the AND gate to pass
subsequent complete clock pulses to X, as shown in Figure 5-38(b).
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FIGURE 5-38 An edge-triggered A
D flip-flop is used to synchronize De:\s:i"ged ————— D Q
the enabling of the AND gate to it X
the NGTs of the clock.
CLOCK P CLK
(a)
CLOCK ! |
| I
: |
A [ |
! Y —
| I
Q
I |
I
L L L
X |
N J
" |
T Complete T,
pulses
(b}

When A returns LOW, Q will not go LOW until the next NGT of the clock at
T,. Thus, the AND gate will not inhibit clock pulses until the clock pulse that ends
at 7T, has been passed through to X. Therefore, output X contains only complete
pulses.

5=-10 DETECTING AN INPUT SEQUENCE

In many situations an output is to be activated only when the inputs are activated in
a certain sequence. This cannot be accomplished using pure combinational logic
but requires the storage characteristic of FFs.

For example, an AND gate can be used to determine when two inputs A and B
are both HIGH, but its output will respond the same regardless of which input goes
HIGH first. But suppose that we want to generate a HIGH output only if A goes
HIGH and then B goes HIGH some time later. One way to accomplish this is shown
in Figure 5-39(a).

The waveforms in Figure 5-39(b) and (c) show that Q will go HIGH only if A
goes HIGH before B goes HIGH. This is because 4 must be HIGH in order for Q to
go HIGH on the PGT of B.

In order for this circuit to work properly, A must go HIGH prior to B by at least
an amount of time equal to the setup time requirement of the FF.
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A O—J Qp—e A I A I
B &— CLK
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(a) {(b) A goes HIGH {c) B goes HIGH
before B before A

FIGURE 5-39 Clocked J-K flip-flop used to respond to a particular sequence of inputs.

0-17 DATA STORAGE AND TRANSFER

By far the most common use of flip-flops is for the storage of data or information.
The data may represent numerical values (e.g., binary numbers, BCD-coded deci-
mal numbers) or any of a wide variety of types of data that have been encoded in
binary. These data are generally stored in groups of FFs called registers.

The operation most often performed on data that are stored in a FF or a regis-
ter is the data transfer operation. This involves the transfer of data from one FF or
register to another. Figure 5-40 illustrates how data transfer can be accomplished be-
tween two FFs using clocked S-C, J-K, and D flip-flops. In each case, the logic value
that is currently stored in FF A is transferred to FF B upon the NGT of the TRANS-
FER pulse. Thus, after this NGT, the B output will be the same as the A output.

The transfer operations in Figure 5-40 are examples of synchronous transfer,
since the synchronous control and CLK inputs are used to perform the transfer. A
transfer operation can also be obtained using the asynchronous inputs of a FF. Fig-
ure 5-41 shows how an asynchronous transfer can be accomplished using the
PRESET and CLEAR inputs of any type of FF. Here, the asynchronous inputs respond

1S

—(O> CLK

—iC

A s B J A J B
—OP CLK —Of CLK —OP CcLk
A o B —K A K B

TRANSFER I i o TRANSFER I t ° P

—p>ClKk 3 —OP>Clk B

TRANSFER | *

FIGURE 540 Synchronous data transfer operation performed by various types of clocked

FFs.
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Transfer. ):
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to LOW levels. When the TRANSFER ENABLE line is held LOW, the two NAND out-
puts are kept HIGH, with no effect on the FF outputs. When the TRANSFER ENABLE
line is made HIGH, one of the NAND outputs will go LOW, depending on the state
of the A and 4 outputs. This LOW will either set or clear FF B to the same state as
FF A. This asynchronous transfer is done independently of the synchronous and
CLK inputs of the FF. Asynchronous transfer is also called jam transfer, because the
data can be “jammed” into FF B even if its synchronous inputs are active.

Parallel Data Transfer

Figure 5-42 illustrates data transfer from one register to another using D-type FFs.
Register X consists of FFs X;, X5, and X3; register Y consists of FFs Y;, Y5, and ¥;.
Upon application of the PGT of the TRANSFER pulse, the level stored in X; is trans-
ferred to Y3, X, to Y5, and X; to ¥;. The transfer of the contents of the X register into
the Yregister is a synchronous transfer. It is also referred to as a parallel transfer,

Register X
A
s )
X, X5 X3
Note: After PGT of
transfer pulse,
Y register and _ _ _
X register hold X4 X, X3
same data.
I-—- D Y, l: D Y, l—- D Yy 7
>SClK Y, >CLK Y, >CLK Vs
TRANSFER
JdL — -
e
Register Y

FIGURE 542 Parallel transfer of contents of register X into register Y.
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since the contents of X;, X;, and X; are transferred simultaneously into Y;, Y5, and
Y;. If a serial transfer were performed, the contents of the X register would be
transferred to the Yregister one bit at a time. This will be examined in the next sec-
tion.

It is important to understand that parallel transfer does not change the contents
of the register that is the source of data. For example, in Figure 5-42, if X;X,X; =
101 and Y;¥,Y; = 011 prior to the occurrence of the TRANSFER pulse, then both
registers will be holding 101 after the TRANSFER pulse.

—_

True or false: Asynchronous data transfer uses the CLK input.

2. Which type of FF is best suited for synchronous transfer because it requires
the fewest interconnections from one FF to the other?

3. If J-K flip-flops were used in the registers of Figure 5-42, how many total in-
terconnections would be required from register X to register ¥?

4. True or false: Synchronous data transfer requires less circuitry than asynchro-

nous transfer.

5-18 SERIAL DATA TRANSFER: SHIFT REGISTERS

Before we describe the serial data transfer operation, we must first examine the
basic shift-register arrangement. A shift register is a group of FFs arranged so
that the binary numbers stored in the FFs are shifted from one FF to the next for
every clock pulse. You have undoubtedly seen shift registers in action in devices
such as an electronic calculator, where the digits shown on the display shift over
each time you key in a new digit. This is the same action taking place in a shift reg-
ister.

Figure 5-43(a) shows one way to arrange J-K flip-flops to operate as a four-bit
shift register. Note that the FFs are connected so that the output of Xj transfers into
X5, X, into X;, and X; into X,. What this means is that upon the occurrence of the
NGT of a shift pulse, each FF takes on the value stored previously in the FF on its
left. Flip-flop X; takes on a value determined by the conditions present on its Jfand
K inputs when the NGT occurs. For now, we will assume that X3’s Jand Kinputs are
fed by the DATA IN waveform shown in Figure 5-43(b). We will also assume that all
FFs are in the O state before shift pulses are applied.

The waveforms in Figure 5-43(b) show how the input data are shifted from left
to right from FF to FF as shift pulses are applied. When the first NGT occurs at T3,
each of the FFs X,, X;, and X, will have the /= 0, K = 1 condition present at its in-
puts because of the state of the FF on its left. Flip-flop X; will have /= 1, K= 0 be-
cause of DATA IN. Thus, at 7; only X5 will go HIGH, while all the other FFs remain
LOW. When the second NGT occurs at T3, flip-flop X; will have /= 0, K= 1 be-
cause of DATA IN. Flip-flop X, will have /= 1, K = 0 because of the current HIGH
at X;. Flip-flops X; and X, will still have /= 0, K = 1. Thus, at 7, only FF X, will go
HIGH, FF X; will go LOW, and FFs X; and X, will remain LOW.

Similar reasoning can be used to determine how the waveforms change at 7;
and T;. Note that on each NGT of the shift pulses, each FF output takes on the level
that was present at the output of the FF on its left just prior to the NGT. Of course,
X; takes on the level that was present at DATA IN just prior to the NGT.
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FIGURE 5-43 Four-bit shift register.

Hold Time Requirement

In this shift-register arrangement it is necessary that the FFs have a very small hold
time requirement, because there are times when the J; K inputs are changing at
about the same time as the CLK transition. For example, the Xj; output switches from
1 to 0 in response to the NGT at 75, causing the J, K inputs of X, to change while its
CLK input is changing. Actually, because of the propagation delay of X;, the J, K in-
puts of X, won’t change for a short time after the NGT. For this reason, a shift reg-
ister should be implemented using edge-triggered FFs that have a f; value less than
one CLK-to-output propagation delay. This latter requirement is easily satisfied by
most modern edge-triggered FFs.

Serial Transfer Between Registers

Figure 5-44(a) shows two three-bit shift registers connected so that the contents of
the X register will be serially transferred (shifted) into register Y. We are using D flip-
flops for each shift register, since this requires fewer connections than J-K flip-flops.
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X Register Y Register
A A
r N N
0@®— D Xy D X4 D Xo D Y, D Y, D Yo
CLK CLK CLK CLK CLK CLK
Shift pulses
(a)
Xy X, Xoo | Y2 = Yy Yo
rTTo T T |
P 0 7] 0 0 0 —«——— Before pulses applied
L- *\(‘ —X‘ 5L
N
0 1 0 1 0 0 —-———— After first pulse
NN N
0 0 1 0 1 0 —«—— After second pulse
RN
0 0 0o | 1 0 1 | «————— After third pulse
I R S
(b}

FIGURE 544 Serial transfer of information from X register into Y register.

Notice how X, the last FF of register X, is connected to the D input of Y5, the first
FF of register Y. Thus, as the shift pulses are applied, the information transfer takes
place as follows: X, » X; > X, > ¥, > ¥} — Y, The X, FF will go to a state de-
termined by its D input. For now, D will be held LOW, so that X, will go LOW on
the first pulse and will remain there.

To illustrate, let us assume that before any shift pulses are applied, the contents
of the X register are 101 (e, X, = 1, X; = 0, X, = 1) and the Y register is at 000.
Refer to the table in Figure 5-44(b), which shows how the states of each FF change
as shift pulses are applied. The following points should be noted:

1. On the NGT of each pulse, each FF takes on the value that was stored in the FF
on its left prior to the occurrence of the pulse.

2. After three pulses, the 1 that was initially in X is in Y5, the O initially in X; is in Y,
and the 1 initially in X, is in ¥;. In other words, the 101 stored in the X register has
now been shifted into the Y register. The X register is at 000; it has lost its original
data.

3. The complete transfer of the three bits of data requires three shift pulses.
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Assume the same initial contents of the X and Y registers in Figure 5-44. What will
be the contents of each FF after the occurrence of the sixth shift pulse?

Solution

If we continue the process shown in Figure 5-44(b) for three more shift pulses, we
will find that all of the FFs will be in the 0 state after the sixth pulse. Another way
to arrive at this result is to reason as follows: the constant 0 level at the D input of
X; shifts in a new 0 with each pulse so that after six pulses the registers are filled
up with 0s.

Shift-Left Operation

The FFs in Figure 5-44 can just as easily be connected so that information shifts from
right to left. There is no general advantage of shifting in one direction over another;
the direction chosen by a logic designer will often be dictated by the nature of the
application, as we shall see.

Parallel Versus Serial Transfer

In parallel transfer, all of the information is transferred simultaneously upon the
occurrence of a single transfer command pulse (Figure 5-42), no matter how many
bits are being transferred. In serial transfer, as exemplified by Figure 5-44, the
complete transfer of N bits of information requires N clock pulses (three bits re-
quires three pulses, four bits requires four pulses, etc.). Parallel transfer, then, is ob-
viously much faster than serial transfer using shift registers.

In parallel transfer, the output of each FF in register X is connected to a corre-
sponding FF input in register Y. In serial transfer, only the last FF in register X is
connected to register Y. In general, then, parallel transfer requires more intercon-
nections between the sending register (X) and the receiving register (¥) than does
serial transfer. This difference becomes more critical when a greater number of bits
of information are being transferred. This is an important consideration when the
sending and receiving registers are remote from each other, since it determines how
many lines (wires) are needed for the transmission of the information.

The choice of either parallel or serial transmission depends on the particular
system application and specifications. Often, a combination of the two types is used
to take advantage of the speed of parallel transfer and the economy and simplicity
of serial transfer. More will be said later about information transfer.

True or false: The fastest method for transferring data from one register to an-
other is parallel transfer.

2. What is the major advantage of serial transfer over parallel transfer?

ok

3. Refer to Figure 5-44. Assume that the initial contents of the registers are X, =
0, X% =1,X%=0Y=1 Y, =1, ¥, = 0. Also assume that the D input of X,
is held HIGH. Determine the value of each FF output after the occurrence of
the fourth shift pulse.

4. In which form of data transfer does the source of the data not lose its data?
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FREQUENCY DIVISION AND COUNTING

FIGURE 5-45 J-K flip-flops wired

Refer to Figure 5-45(a). Each FF has its Jand K inputs at the 1 level, so that it will
change states (toggle) whenever the signal on its CLK input goes from HIGH to
LOW. The clock pulses are applied only to the CLK input of FF Q,. Output Q, is
connected to the CIK input of FF Q;, and output @, is connected to the CLK input
of FF Q,. The waveforms in Figure 5-45(b) show how the FFs change states as the
pulses are applied. The following important points should be noted:

1.

Flip-flop Q, toggles on the negative-going transition of each input clock pulse.
Thus, the Q, output waveform has a frequency that is exactly one-half of the
clock pulse frequency.

. Flip-flop Q, toggles each time the Q, output goes from HIGH to LOW. The Q,

waveform has a frequency equal to exactly one-half the frequency of the Q, out-
put and therefore one-fourth of the clock frequency.

Flip-flop Q, toggles each time the Q; output goes from HIGH to LOW. Thus, the
Q, waveform has one-half the frequency of Q and therefore one-eighth of the
clock frequency.

Each FF output is a square wave (50 percent duty cycle).

As described above, each FF divides the frequency of its input by 2. Thus, if we

were to add a fourth FF to the chain, it would have a frequency equal to one-sixteenth

as a three-bit binary counter

(MOD-8).
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of the clock frequency, and so on. Using the appropriate number of FFs, this circuit
could divide a frequency by any power of 2. Specifically, using N flip-flops would
produce an output frequency from the last FF which is equal to 1/2" of the input fre-
quency.

This application of flip-flops is referred to as frequency division. Many appli-
cations require a frequency division. For example, your wristwatch is no doubt a
“quartz” watch. The term gquartz watch means that a quartz crystal is used to gener-
ate a very stable oscillator frequency. The natural resonant frequency of the quartz
crystal in your watch is likely 1 MHz or more. In order to advance the “seconds” dis-
play once every second, the oscillator frequency is divided by a value that will pro-
duce a very stable and accurate 1 Hz output frequency.

Counting Operation

In addition to functioning as a frequency divider, the circuit of Figure 5-45 also op-
erates as a binary counter. This can be demonstrated by examining the sequence
of states of the FFs after the occurrence of each clock pulse. Figure 5-46 presents the
results in a state table. Let the Q,Q, Q, values represent a binary number where Q,
is in the 2% position, Q; is in the 2! position, and Q, is in the 2° position. The first
eight 3,0, Q, states in the table should be recognized as the binary counting se-
quence from 000 to 111. After the first NGT, the FFs are in the 001 state (Q, = 0,
O, =0, O, = 1, which represents 001, (equivalent to decimal 1); after the second
NGT, the FFs represent 010,, which is equivalent to 2,,; after three pulses, 011, =
3,0; after four pulses, 100, = 4,4; and so on, until after seven pulses, 111, = 7;,. On
the eighth NGT, the FFs return to the 000 state, and the binary sequence repeats it-
self for succeeding pulses.

Thus, for the first seven input pulses, the circuit functions as a binary counter in
which the states of the FFs represent a binary number equivalent to the number of
pulses that have occurred. This counter can count as high as 111, = 7,, before it re-
turns to 000.

FIGURE 5-46 Table of flip-flop 22 2 20
states shows binary counting Q, Q, Q
sequence.
0 0 0 Before applying clock pulses
0 0 1 After pulse #1
0 1 0 After pulse #2
0 1 1 After pulse #3
1 0 0 After pulse #4
1 0 1 After pulse #5
1 1 0 After pulse #6
1 1 1 After pulse #7
0 0 0 After pulse #8 recycles to 000
0 0 1 After pulse #9
0 1 0 After pulse #10
0 1 1 After pulse #11
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FIGURE 5-47 State transition
diagram shows how the states of
the counter flip-flops change with

each applied clock pulse.
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*Note: each arrow
represents-the
occurrence of
a clock pulse

State Transition Diagram

Another way to show how the states of the FFs change with each applied clock
pulse is to use a state transition diagram as illustrated in Figure 5-47. Each circle
represents one possible state as indicated by the binary number inside the circle. For
example, the circle containing the number 100 represents the 100 state (i.e., O, = 1,
Q1= Q=0.

The arrows connecting one circle to another show how one state changes to
another as a clock pulse is applied. By looking at a particular state circle, we can see
which state precedes it and which state follows it. For example, looking at the 000
state, we see that this state is reached whenever the counter is in the 111 state and
a clock pulse is applied. Likewise, we see that the 000 state is always followed by
the 001 state.

We will use state transition diagrams to help describe, analyze, and design
counters and other sequential circuits.

MOD Number

The counter of Figure 5-45 has 2° = 8 different states (000 through 111). It would be
referred to as a MOD-8 counter, where the MOD number indicates the number of
states in the counting sequence. If a fourth FF were added, the sequence of states
would count in binary from 0000 to 1111, a total of 16 states. This would be called
a MOD-16 counter. In general, if N flip-flops are connected in the arrangement of
Figure 5-45, the counter will have 2" different states, and so it is a MOD-2" counter.
it would be capable of counting up to 2% — 1 before returning to its 0 state.

The MOD number of a counter also indicates the frequency division obtained
from the last FF. For instance, a four-bit counter has four FFs, each representing one
binary digit (bit), and so it is a MOD-2* = MOD-16 counter. It can therefore count
up to 15 (= 2* — 1). It can also be used to divide the input pulse frequency by a
factor of 16 (the MOD number).

We have looked only at the basic FF binary counter. We examine counters in
much more detail in Chapter 7.
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Assume that the MOD-8 counter in Figure 5-45 is in the 101 state. What will be the
state (count) after 13 pulses have been applied?

Solution
Locate the 101 state on the state transition diagram. Proceed around the state
diagram through eight state changes, and you should be back in the 101 state.
Now continue through five more state changes (for a total of 13), and you should
end up in the 010 state.

Notice that since this is a MOD-8 counter with eight states, it takes eight state
transitions to make one complete excursion around the diagram back to the
starting state.

Review Questions

Consider a counter circuit that contains six FFs wired in the arrangement of Figure

5'45 (i.e., QS, Q49 Q_‘}’ QZv Qh %)

(@) Determine the counter’'s MOD number.

(b) Determine the frequency at the output of the last FF (Qs) when the input clock
frequency is 1 MHz.

(©) What is the range of counting states for this counter?

(d) Assume a starting state (count) of 000000. What will be the counter’s state after
129 pulses?

Solution
(@ MOD number = 2% = 64.

(b) The frequency at the last FF will equal the input clock frequency divided by the
MOD number. That is,

1 MHz

f@t Qs) = > = 15.625 kHz

(© The counter will count from 000000, to 111111, (0 to 63,,) for a total of 64
states. Note that the number of states is the same as the MOD number.

(d) Since this is a MOD-64 counter, every 64 clock pulses will bring the counter

back to its starting state. Therefore, after 128 pulses the count is back to 000000.
The 129th pulse brings the counter to the 000001 counter.

1. A 20-kHz clock signal is applied to a J-K flip-flop with /= K = 1. What is the
frequency of the FF output waveform?

2. How many FFs are required for a counter that will count 0 to 255,47
3. What is the MOD number of this counter?

4. What is the frequency of the output of the eighth FF when the input clock fre-
quency is 512 kHz?
5. If this counter starts at 00000000, what will be its state after 520 pulses?
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5-20 MICROCOMPUTER APPLICATION

Your study of digital systems is still in a relatively early stage, and you have not
learned very much about microprocessors and microcomputers. However, you can
get a basic idea of how FFs are employed in a typical microprocessor-controlled ap-
plication without being concerned with all of the details you will need to know
later.

Figure 5-48 shows a microprocessor unit (MPU) with its outputs used to trans-
fer binary data to register X, which consists of four D flip-flops X3, X;, X;, X,. One
set of MPU outputs is the address code made up of the eight outputs A4;5, 4,4, 433,
Az, A1q, Ao, Ao, Ag. Most MPUs have at least 16 available address outputs, but they
are not always all used. A second set of MPU outputs consists of the four data lines
D;, D,, D,, D,. Most MPUs have at least eight available data lines. The other MPU
output is the clock signal CP.

Recall that the MPU is the central processing unit of a microcomputer, and its
main function is to execute a program of instructions stored in the computer’s mem-
ory. One of the instructions it might execute could be one that tells the MPU to
transfer a binary number from a storage resister within the MPU to the external reg-
ister X. In executing this instruction, the MPU would perform the following steps:

1. Place the binary number onto its data output lines Dy through D,.

2. Place the proper address code on its output lines 4;5 through Ag to select regis-
ter X as the recipient of the data.

3. Once the data and address outputs are stabilized, the MPU generates the clock
pulse CP to clock the register and complete the parallel transfer of data into X.

There are many situations where an MPU, under the control of a program, will
send data to an external register in order to control external events. For example,
the individual FFs in the register can control the ON/OFF status of electromechani-
cal devices such as solenoids, relays, motors, and so on (through appropriate inter-
face circuits, of course). The data sent from the MPU to the register will determine

Ass D X3 [—®

Az —P CLK

ATZ 1

Aqy

Ao D —e

Ag s ) Xz
A -> J/ 1—> CLK
MPU I
CP
D X; @
D, >— ¢—> CLK
D, -
D >
D:, - D Xo @
—> CLK

FIGURE 5-48 Example of a microprocessor transferring binary data to an external register.
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which devices are ON and which are OFF. Another common example is where the
register is used to hold a binary number for input to a digital-to-analog converter
(DAC). The MPU sends the binary number to the register, and the DAC converts it
to an analog voltage which may be used to control something such as the position
of an electron beam on a CRT screen or the speed of a motor.

(@) What address code must the MPU generate in order for the data to be trans-
ferred into X?

(b) Assume that X;—-X, = 0110, A;5—Ag = 11111111, and Ds—-D, = 1011. What will

be in X after a CP pulse occurs?

Solution

(@) In order for the data to be transferred into X, the clock pulse must pass through
AND gate 2 into the CLK inputs of the FFs. This will happen only if the top in-
put of AND gate 2 is HIGH. This means that all of the inputs to AND gate 1

" must be HIGH; that is, 4,5 through Ay must be 1, and Ag must be 0. Thus, the

presence of address code 11111110 is needed to allow data to be transferred
into X.

(b) With Ag = 1, the LOW from AND gate 1 will inhibit CP from getting through
AND gate 2, and the FFs will not be clocked. Therefore, the contents of register
X will not change from 0110.

1. Show how the 74HC175 IC of Figure 5-32 can be used for the X register of Fig-
ure 5-48.

5-21 SCHMITT-TRIGGER DEVICES

A Schmitt-trigger circuit is not classified as a flip-flop, but it does exhibit a type
of memory characteristic that makes it useful in certain special situations. One of
those situations is shown in Figure 5-49(a). Here a standard INVERTER is being dri-
ven by a logic input that has relatively slow transition times. When these transition
times exceed the maximum allowed values (this depends on the particular logic
family), the outputs of logic gates and INVERTERs may produce oscillations as the
input signal passes through the indeterminate range. The same input conditions can
also produce erratic triggering of FFs.

A device that has a Schmitt-trigger type of input is designed to accept slow-
changing signals and produce an output that has oscillation-free transitions. The
output will generally have very rapid transition times (typically 10 ns) that are inde-
pendent of the input signal characteristics. Figure 5-49(b) shows a Schmitt-trigger
INVERTER and its response to a slow-changing input.

If you examine the waveforms in Figure 5-49(b), you should note that the out-
put does not change from HIGH to LOW until the input exceeds the positive-going
threshold voltage, V. Once the output goes LOW, it will remain there even when
the input drops back below Vi, (this is its memory characteristic) until it drops all
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| Standard INVERTER |

A
Oscillations may occur
on output if input
transition times are
X too slow
A X
A
|
|
| |
I I Output has clean, fast
5\ ——————— ——— transitions independent
X of input transition times

(b)

FIGURE 5-49 (a) If input transition times are too long, a standard logic device-output might
oscillate or change erratically; (b) a logic device with a Schmitt-trigger type of input will
produce clean, fast output transitions.

the way down below the negative-going threshold voltage, Vi_. The values of the
two threshold voltages will vary from logic family to logic family, but V;_ will al-
ways be less than V...

The Schmitt-trigger INVERTER, and all other devices with Schmitt-trigger inputs,
use the distinctive symbol shown in Figure 5-49(b) to indicate that they can reliably
respond to slow-changing input signals. Logic designers use ICs with Schmitt-trigger
inputs to convert slow-changing signals to clean, fast-changing signals that can drive
standard IC inputs.

Several ICs are available with Schmitt-trigger inputs. The 7414, 74LS14, and
74HC14 are hex INVERTER ICs with Schmitt-trigger inputs. The 7413, 74LS13, and
74HC13 are dual four-input NANDs with Schmitt-trigger inputs.
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1. What could occur when a slow-changing signal is applied to a standard logic
S Ic?

2. How does a Schmitt-trigger logic device operate differently from a standard
logic device?

PRy

5-22 ONE-SHOT (MONOSTABLE MULTIVIBRATOR)

A digital circuit that is somewhat related to the FF is the one-shot (abbreviated OS).
Like the FF, the OS has two inputs, Q and 0O, which are the inverse of each other.
Unlike the FF, the OS has only one stable output state (normally Q= 0, Q = 1),
where it remains until it is triggered by an input signal. Once triggered, the OS out-
puts switch to the opposite state (Q = 1, Q = 0). It remains in this quasi-stable
state for a fixed period of time, ,, which is usually determined by an RC time con-
stant that results from the values of external components connected to the OS. After
a time £, the OS outputs return to their resting state until triggered again.

- Figure 5-50(a) shows the logic symbol for a OS. The value of £, is often indi-
cated somewhere on the OS symbol. In practice, £, can vary from several nanosec-
onds to several tens of seconds. The exact value of ¢, is variable and is determined
by the values of external components Ry and Cr.

Stable state
Normally low Ll
a output Q=0 Q=1

Trigger O L
input T 0s

_ Normally high Quasi-stable state
—e

Q output Q=1,Q=0
L] Ld
Rr  Cy
AR

fp o RTCT

@ Transitions at
d and f have

a b cd e f no effect on Q

! since it is already
T A M HIG/H
0 d

(b)

FIGURE 5-50 OS symbol and typical waveforms for nonretriggerable operation.
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Two types of one-shots are available in IC form: the nonretriggerable OS and
the retriggerable OS.

Nonretriggerable One-Shot

The waveforms in Figure 5-50(b) illustrate the operation of a nonretriggerable OS
that triggers on positive-going transitions at its trigger (7) input. The important
points to note are:

1. The PGTs at points a, b, ¢, and e will trigger the OS to its quasi-stable state for a
time #,, after which it automatically returns to the stable state.

2. The PGTs at points d and fhave no effect on the OS because it has already been
triggered to the quasi-stable state. The OS must return to the stable state before
it can be triggered.

3. The OS output-pulse duration is always the same regardless of the duration of
the input pulses. As stated above, #, depends only on Ry and Cr and the internal
OS circuitry. A typical OS may have a £, given by £, = 0.7 Ry C;.

Retriggerable One-Shot

The retriggerable OS operates much like the nonretriggerable OS except for one
muajor difference: it can be retriggered while it is in the quasi-stable state, and it will
begin a new t, interval. Figure 5-51(a) compares the response of both types of OS
using a #, of 2 ms. Let’s examine these waveforms.

Both types of OS respond to the first trigger pulse at t = 1 ms by going HIGH
for 2 ms and then returning LOW. The second trigger pulse at ¢ = 5 ms triggers both
one-shots to the HIGH state. The third trigger pulse at = 6 ms has no effect on the
nonretriggerable OS, since it is already in its quasi-stable state. However, this trigger
pulse will retrigger the retriggerable OS to begin a new £, = 2 ms interval. Thus, it
will stay HIGH for 2 ms after this third trigger pulse.

In effect, then, a retriggerable OS begins a new £, interval each time a trigger
pulse is applied, regardless of the current state of its Q output. In fact, trigger pulses

FIGURE 551 (a) Comparison of T ’-l I l I I
nonretriggerable and

retriggerable OS responses for

I, = 2 ms. (b) Retriggerable OS 0__] | ! l Nonretriggerable OS
begins a new £, interval each i | :

time it receives a trigger pulse. ' !

Q | Retriggerable OS

0 1 2 3 4 5 6 7 8 9 —
ms

Retriggerable

L

10 —
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-
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can be applied at a rate fast enough that the OS will always be retriggered before
the end of the ¢, interval and Q will remain HIGH. This is shown in Figure 5-51(b),
where eight pulses are applied every 1 ms. Q does not return LOW until 2 ms after
the last trigger pulse.

Actual Devices

Several one-shot ICs are available in both the retriggerable and the nonretriggerable
versions. The 74121 is a single nonretriggerable one-shot IC; the 74221, 74LS221,
and 74HC221 are dual nonretriggerable one-shot ICs; the 74122 and 74LS122 are
single retriggerable one-shot ICs; the 74123, 7415123, and 74HC123 are dual retrig-
gerable one-shot ICs.

Figure 5-52(a) shows the traditional symbol for the 74121 nonretriggerable one-
shot IC. Note that it contains internal logic gates to allow inputs 4, 4,, and Bto trig-
ger the OS in a variety of ways. The B input is a Schmitt-trigger type of input that is
allowed to have slow transition times and still reliably trigger the OS. The pins la-
beled Rint, Rext/ Cext, and Cexr are used to connect an external resistor and capac-
itor to achieve the desired output pulse duration. Figure 5-52(b) is the IEEE/ANSI
symbol for the 74121 nonretriggerable OS. Note how this symbol represents the
logic gates. Also notice the presence of a small pulse with 1 in front of it. This indi-
cates that the device is a nonretriggerable OS. The IEEE/ANSI symbol for a retrig-
gerable OS would not have the 1 in front of the pulse.

Monostable Multivibrator

Another name for the one-shot is monostable multivibrator because it has only one
stable state. One-shots find limited application in most sequential clock-controlled
systems, and experienced designers generally avoid using them because they are
prone to false triggering by spurious noise. When they are used, it is usually in sim-
ple timing applications that utilize the predetermined ¢, interval. Several of the end-
of-chapter problems will illustrate how a OS is used.

RinT Rext/Cexr
74121

A1 o—I N 1,_| e 0Q
QfF—e A2 o—D

74121 Be— 7

RintT @—— R1

Qf——e  Cexr @——{Cx
Rext/Cext @——— RX/CX B~ e¢q
1 (X indicates non-logic connection)
Cexr
(a) (b)

FIGURE 5-52 Logic symbols for the 74121 nonretriggerable one-shot; (a) traditional;

(b) IEEE/ANSIL.
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In the absence of a trigger pulse, what will be the state of a OS output?

2. True or false: When a nonretriggerable OS is pulsed while it is in its quasi-
stable state, the output is not affected.

(=

3. What determines the #, value for a OS?

4. Describe how a retriggerable OS operates differently from a nonretriggerable
OS.

5-23 ANALYZING SEQUENTIAL CIRCUITS

Many logic circuits contain FFs, one-shots, and logic gates that are connected to per-
form a specific operation. Very often, a master clock signal is used to cause the logic
levels in the circuit to go through a particular sequence of states. We can generally
analyze these sequential circuits by following the procedure demonstrated in the
following example.

Consider the circuit of Figure 5-53. Initially, all of the FF outputs are in the 0 state
before the clock pulses are applied. These pulses have a repetition rate of
1 kHz. Determine the waveforms at X, ¥, Z, and W for eight cycles of the clock

input.
Solution

k Step 1. Examine the circuit. Look for circuit arrangements that are familiar,
' such as counters, shift registers, and so on.

FFs X Y, and Z are connected as a three-bit counter that will count the clock
pulses provided that the J/ and K inputs of FF Z, which are driven by the NAND
gate output W, are in the HIGH state. The NAND gate inputs are driven by the X,
Y, and Z outputs.

Step 2. On the circuit diagram, write down the logic levels present at each
input and output prior to the occurrence of the first clock pulse.

The FFs are all initially in the O state. The NAND inputs are 0, 1, and 1,
respectively, so that Wis a HIGH. All J, K inputs are 1. These states are shown on
the circuit diagram in color.

Step 3. Using these conditions, determine the new states of each FF in
response to the first clock pulse.

The NGT of the first clock pulse will toggle Z to the 1 state, and X and Y remain
LOW. See the waveforms of Figure 5-53.
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FIGURE 5-53 Example 5-16.

Step 4. Go back and repeat steps 2 and 3 for the second clock pulse, the third
pulse, and so on. -

With Z now at 1, the NAND inputs are 0, 1, and 0, respectively, so that prior to the
second clock pulse, Wis still HIGH, all /, K inputs are HIGH, and each FF is ready
to toggle (you may want to update these logic levels on the circuit diagram). The
second NGT of the clock toggles Z from 1 to 0; the NGT at Z then toggles Y from
0 to 1. X remains at 0. See the waveforms.

Prior to the third clock pulse, the NAND inputs are 0, 0, and 1, respectively,
so Wis still HIGH and all J; K inputs are HIGH. The third NGT of the clock
toggles Z from 0 to 1 while X and Y remain unchanged. See the waveforms.
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Prior to the fourth clock pulse, the NAND inputs are all 0, so that output W
and all /, K inputs are still HIGH. The fourth NGT toggles Z from 1 to 0, which in
turn toggles ¥ from 1 to 0, which in turn toggles X from 0 to 1. See the waveforms.

Prior to the fifth clock pulse, the NAND inputs are all 1, so that output W is
LOW. This places a LOW at the Jand K inputs of FF Z so that it is in the no-change
mode. The fifth NGT will have no effect on Z, and none of the logic levels in the
circuit will change. In fact, none of the succeeding NGTs will cause any changes;
the counter is prevented from counting any further. See the waveforms.

5-24 CLOCK GENERATOR CIRCUITS

Flip-flops have two stable states; therefore, we can say that they are bistable multi-
vibrators. One-shots have one stable state, and so we call them monostable multi-
vibrators. A third type of multivibrator has no stable states; it is called an astable or
free-running multivibrator. This type of logic circuit switches back and forth (os-

" cillates) between two unstable output states. It is useful for generating clock signals

for synchronous digital circuits.

Several types of astable multivibrators are in common use. We will present three
of them without any attempt to analyze their operation. They are presented here so
that you can construct a clock generator circuit if needed for a project or for testing
digital circuits in the lab.

Schmitt-Trigger Oscillator

Figure 5-54 shows how a Schmitt-trigger INVERTER can be connected as an oscilla-
tor. The signal at Vo is an approximate square wave with a frequency that de-
pends on the R and C values. The relationship between the frequency and RC val-
ues is shown in Figure 5-54 for three different Schmitt-trigger INVERTERs. Note the
maximum limits on the resistance value for each device. The circuit will fail to os-
cillate if R is not kept below these limits.

L ] +5V
14
2 4V. ...
Vout
7 7414 oV
2100 pF or equivalent
1L IC Frequency
= = 7414 ~0.8/RC (R <500 Q)

741814 | =08/RC (R<2kQ)
74HC14 | =1.2/RC  (R<10 MQ)

FIGURE 554 Schmitt-trigger oscillator using a 7414 INVERTER. A 7413 Schmitt-trigger
NAND may also be used.
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+5V
— T
5V ‘
Ra 4 8
7 3 OUTPUT. ov.. . ... I
4
RB — t; —=|
6 mer
t, = 0.693 RgC
2 t; = 0.693 (R, + RplC
5 T= h + t:
frequency = 1/T

¢ | duty cycle = t,/T x 100%
T Rs + Rg < 6.6 MQ
C 2 500 pF

FIGURE 5-55 555 timer IC used as an astable multivibrator.

555 Timer Used as an Astable Multivibrator

The 555 timer IC is a TTL-compatible device that can operate in several differ-
ent modes. Figure 5-55 shows how external components can be connected to a
555 so that it operates as a free-running oscillator. Its output is a repetitive rec-
tangular waveform that switches between two logic levels with the time intervals
at each logic level determined by the R and C values. The formulas for these
time intervals, # and &, and the overall period of the oscillations, 7, are given in
the figure. The frequency of the oscillations is, of course, the reciprocal of 7. As
the formulas in the diagram indicate, the # and ¢ intervals cannot be equal un-
less R, is made zero. This cannot be done without producing excess current
through the device. This means that it is impossible to produce a perfect 50 per-
cent duty-cycle square wave output. It is possible, however, to get very close to
a 50 percent duty cycle by making Rz >> R, (while keeping R, greater than 1 k}),
so that # = ¢,

Calculate the frequency and the duty cycle of the 555 astable multivibrator output
for C = 0.001 uF, R, = 2.2 kQ, and R, = 100 kQ).

Solution

f, = 0.693(100 kQ2)(0.001 uF) = 69.3 ps
5 = 0.693(102.2 k)(0.001 uF) = 70.7 ps
T= 693 + 70.7 = 140 ps
f=1/140 ps = 7.29 kHz

duty cycle = 70.7/140 = 50.5%

Note that the duty cycle is close to 50 percent (square wave) because Ry is much
greater than R, It can be made even closer to 50 percent by making Rz even
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larger compared with R,. For instance, you should verify that if we change R, to 1
kQ (its minimum allowed value), the results are f= 7.18 kHz and duty cycle =
50.3 percent.

Crystal-Controlled Clock Generators

The output frequencies of the signals from the clock-generating circuits described
above depend on the values of resistors and capacitors, and thus they are not ex-
tremely accurate or stable. Even if variable resistors are used so that the desired fre-
quency can be adjusted by “tweaking” the resistance values, changes in the Rand C
values will occur with changes in ambient temperature and with aging, thereby
causing the adjusted frequency to drift. If frequency accuracy and stability are criti-
cal, another method of generating clock signals can be used: a crystal-controlled
clock generator. It employs a highly stable and accurate component called a
quartz crystal. A piece of quartz crystal can be cut to a specific size and shape to vi-

. brate (resonate) at a precise frequency that is extremely stable with temperature and
aging; frequencies from 10 kHz to 80 MHz are readily achievable. When a crystal is
placed in certain circuit configurations, it can produce oscillations at an accurate
and stable frequency equal to the crystal’s resonant frequency. Crystal oscillators are
available as IC packages.

Crystal-controlled clock generator circuits are used in all microprocessor-based
systems and microcomputers, and in any application in which a clock signal is used
to generate accurate timing intervals. We will see this in some of the applications we
encounter in the following chapters.

1. Determine the approximate frequency of a Schmitt-trigger oscillator that uses
a 74HC14 with R = 10 k) and C = 0.005 pF.

2. Determine the approximate frequency and duty cycle of the 555 oscillator for
R, = Rz = 22KkQ and C= 2000 pF.

3. What is the advantage of crystal-controlled clock generator circuits over RC-
controlled circuits?

5-25 TROUBLESHOOTING FLIP-FLOP CIRCUITS

Flip-flop ICs are susceptible to the same kinds of internal and external faults that oc-
cur in combinational logic circuits. All of the troubleshooting ideas that were dis-
cussed in Chapter 4 can readily be applied to circuits that contain FFs as well as
logic gates.

Because of their memory characteristic and their clocked operation, FF circuits
are subject to several types of faults and associated symptoms that do not occur in
combinational circuits. In particular, FF circuits are susceptible to timing problems
that are generally not a concern in combinational circuits. The most common types
of FF circuit faults are described below.
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Open Inputs

Unconnected or floating inputs of any logic circuit are particularl susceptible to
picking up spurious voltage fluctuations called noise. If the noise is large enough in
amplitude and long enough in duration, the logic circuit’s output may change states
in response to the noise. In a logic gate, the output will return to its original state
when the noise signal subsides. In a FF, however, the output will remain
in its new state because of its memory characteristic. Thus, the effect of noise pickup
at any open input is usually more critical for a FF or latch than it is for a logic gate.

The most susceptible FF inputs are those that can trigger the FF to a different
state—such as the CLK, PRESET, and CLEAR. Whenever you see a FF output that is
changing states erratically, you should consider the possibility of an open connec-
tion at one of these inputs.

Figure 5-56 shows a three-bit shift register made up of TTL flip-flops. Initially, all
of the FFs are in the LOW state before clock pulses are applied. As clock pulses
are applied, each PGT will cause the information to shift from each FF to the one
on its right. The diagram shows the “expected” sequence of FF states after each
clock pulse. Since L, = 1 and K, = 0, flip-flop X, will go HIGH on clock pulse 1
and will stay there for all subsequent pulses. This HIGH will shift into X;, and then
X, on clock pulses 2 and 3, respectively. Thus, after the third pulse, all FFs will be
HIGH and should remain there as pulses are continually applied.

+5V

CLOCK

A

Clock pulse ‘Expected "Actual”
number XZ X1 XD x"a X., X‘O
0 0 0_ 0 0 0 0
1 1 \02:0 1 0 0
2 1 11 2o 11 0
3 1\1\1 1 1 1
4 1\1\1 1 1 0
5 1\ 1 \1 1 1 1
6 1\1 \1 1 1 0
7 (NN 111
8 1 1 1 1 1 0

FIGURE 5-56 Example 5-18.
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Now let’s suppose that the “actual” response of the FF states is as shown in
the diagram. Here the FFs change as expected for the first three clock pulses.
From then on, flip-flop X,, instead of staying HIGH, alternates between HIGH and
LOW. What possible circuit fault can produce this operation? ;

Solution

On the second pulse, X; goes HIGH. This should make J, = 1, Ky = 0 so that all
subsequent clock pulses should set X, = 1. Instead, we see X, changing states (tog-
gling) on all pulses after the second one. This toggle operation would occur if j, and
Ky were both HIGH. The most probable fault is a break in the connection between
X, and K,. Recall that a TTL device responds to an open input as if it were a logic
HIGH, so that an open at Kj is the same as a HIGH.

Shorted Outputs

The following example will illustrate how a fault in a FF circuit can cause a mis-
leading symptom that may result in a longer time to isolate the fault.

Consider the circuit in Figure 5-57 and examine the logic probe indications shown
in the accompanying table. There is a LOW at the D input of the FF when pulses
are applied to its CLK input, but the Q output fails to go to the LOW state. The
technician testing this circuit considers each of the following possible circuit faults:

. Z2-5 is internally shorted to V.

Z1-4 is internally shorted to V.

72-5 or Z1-4 is externally shorted to V.

72-4 is internally or externally shorted to GROUND. This would keep PRE acti-
vated and would override the CLK input.

5. There is an internal failure in Z2 that prevents Q from responding propertly to its
inputs.

RIS

The technician, after making the necessary ohmmeter checks, rules out the
first four possibilities. He also checks Z2’s V- and GROUND pins and finds that
they are at the proper voltages. He is reluctant to unsolder Z2 from the circuit until
he is certain that it is faulty, and so he decides to look at the clock signal. He uses
an oscilloscope to check its amplitude, frequency, pulse width, and transition
times. He finds that they are all within the specifications for the 74LS74. Finally, he
concludes that Z2 is faulty.

He removes the 74LS74 chip and replaces it with another one. To his dismay,
the circuit with the new chip behaves in exactly the same way. After scratching his
head, he decides to change the NAND gate chip, although he doesn’t know why.
As expected, he sees no change in the circuit operation.

Becoming more puzzled, he recalls that his electronics lab instructor
emphasized the value of performing a thorough visual check on the circuit board,
and so he begins to examine it carefully. While he is doing that, he detects a


Albustani
Rechteck



Section 5-25 / Troubleshooting Flip-Flop Circuits o 241

+5V
+5V
Z1: 74LS00
A @i PRE 4
,| 321p QF—e 6
B @— 5 Z1 X
7 ¢ |
IL " 3 P
~— > CLK 22 Pin [ Condition
Z1-1 HIGH
+5V Z1-2 HIGH
Z1-3 LOW
ol 72-2| LOW
CLR Z2-3 | Puises
T3 72:5| HIGH
? _L 21-4 | HIGH

FIGURE 557 Example 5-19.

solder bridge between pins 6 and 7 of Z2. He removes it and tests the circuit, and
it functions correctly. Explain how this fault produced the operation observed.

Solution

The solder bridge was shorting the Q output to GROUND. This means that Q is
permanently stuck LOW. Recall that in all latches and FFs, the Q and Q outputs are
internally cross-coupled so that the level on one will affect the other. For example,
take another look at the internal circuitry for a J-K flip-flop in Figure 5-23. Note
that a constant LOW at Q would keep a LOW at one input of NAND gate 3 so that
Q would have to stay HIGH regardless of the conditions at J, K, and CLK

The technician learned a valuable lesson about troubleshooting FF circuits. He
learned that both outputs should be checked for faults, even those that are not
connected to other devices.

Clock Skew

One of the most common timing problems in sequential circuits is clock skew. One
type of clock skew occurs when a clock signal, because of propagation delays, ar-
rives at the CIK inputs of different FFs at different times. In many situations the
skew can cause a FF to go to a wrong state. This is best illustrated with an example.

Refer to Figure 5-58(a), where the signal CLOCK1 is connected directly to FF Q,
and indirectly to Q, through a NAND gate and INVERTER. Both FFs are supposed to
be clocked by the occurrence of a NGT of CLOCK1 provided that X is HIGH. If we
assume that initially Q; = Q, = 0 and X = 1, the NGT of CLOCKI should set Q; =
1 and have no effect on Q,. The waveforms in Figure 5-58(b) show how clock skew
can produce incorrect triggering of Q,.
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FIGURE 558 Clock skew occurs when two flip-flops that are supposed to be clocked
simultaneously are clocked at slightly different times due to a delay in the arrival of the
clock signal at the second flip-flop.
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Because of the combined propagation delays of the NAND gate and INVERTER,
the transitions of the CLOCKZ2 signal are delayed with respect to CLOCKI by an
amount of time #. The NGT of CLOCKZ2 arrives at Q,’s CLK input ¢ later than the
NGT of CLOCKT appears at Q,’s CLK input. This # is the clock skew. The NGT of
CLOCK1 will cause Q, to go HIGH after a time #, which is equal to Q,’s %y propa-
gation delay. If £, is less than the skew ¢, Q, will be HIGH when the NGT of
CLOCKZ occurs, and this may incorrectly set Q, = 1 if its setup time requirement, %,
is met.

For example, assume that the clock skew is 40 ns and the #y of Q, is 25 ns.
Thus, Q; will go HIGH 15 ns before the NGT of CLOCKZ2. If Q,’s setup time re-
quirement is smaller than 15 ns, Q, will respond to the HIGH at its D input when
the NGT of CLOCKZ occurs, and Q, will go HIGH. This, of course, is not the ex-
pected response of Q,. It is supposed to remain LOW.

The effects of clock skew are not always easy to detect, because the response
of the affected FF may be intermittent (sometimes it works correctly, sometimes it
doesn’t). This is because the situation is dependent on circuit propagation delays
and FF timing parameters, which vary with temperature, length of connections,
power supply voltage, and loading. Sometimes just connecting an oscilloscope
probe to a FF or gate output will add enough load capacitance to increase the de-
vice’s propagation delay so that the circuit functions correctly; then when the probe
is removed, the incorrect operation reappears. This is the kind of situation that ex-
plains why some technicians are prematurely gray.

Problems caused by clock skew can be eliminated by equalizing the delays in
the various paths of the clock signal so that the active transition arrives at each FF at
approximately the same time. This is examined in Problem 5-52.

1. What is clock skew? How can it cause a problem?

5=-20 APPLICATIONS USING PROGRAMMABLE LOGIC DEVICES*

In Chapter 4 we used CUPL to program a simple combinational logic circuit on a
GAL 16V8 PLD. In this chapter we have studied logic circuits that latch and clocked
flip-flop circuits that sequence through various states in response to a clock edge.
These latching and sequential circuits can also be implemented using PLDs.

The NAND Latch

Figure 5-59(a) is the NAND gate latch we studied in Section 5-1, Figure 5-7. It is
drawn using the alternate NAND symbol with active-LOW inputs. A Boolean equa-
tion can be written for each output to describe the operation of this circuit exactly
as we did for combinational logic circuits in Chapter 4. However, in this case, each
output depends not only on the present state of the SET or CLEAR inputs, but also
on the present state of the other output. Thus we will have output variables on the
right side of the equation as well as on the left. This is because outputs are fed back
into the inputs of the NAND gates. This is a characteristic of latching circuits. Most

*As stated in Chapter 4, this section and all sections covering PLDs may be skipped if desired.
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SET Q SBAR Q

QBAR

Ol

CLEAR CBAR

(a) (b)

FIGURE 559 (a) NAND latch; (b) NAND latch with relabeled inputs and output.

PLDs have the ability to feed back the output signal to the input circuitry in order to
accommodate latching operation.

In order to avoid confusion when writing Boolean equations for this latch, we
will relabel the latch’s active-LOW inputs as SBAR and CBAR instead of SET and
CLEAR. See Figure 5-59(b). Likewise we will label the outputs Q and QBAR. This
way the overbar that represents “active-LOW” in the variable name is not confused
with the Boolean NOT operation in the equation. The Boolean equations (using
CUPL syntax) for the NAND latch become:

Q
QBAR

ISBAR # IQBAR;
ICBAR # 1Q;

The D Latch

The D transparent latch circuit can also be implemented using a PLD. Refer back to
the diagram in Figure 5-27(a). By writing Boolean expressions for each node of the
circuit and eliminating double inversions, we can generate the following logic equa-
tions for Q and QBAR:

Q = (D & EN) # IQBAR;
Q is HIGH when D is HIGH while the latch is enabled OR whenever QBAR is LOW.
QBAR = (ID & EN) # 1Q;

QBAR is HIGH when D is LOW while the latch is enabled OR whenever Q is LOW.
Once you are clear as to how these Boolean equations have been developed
for the NAND latch and D latch, you may wish to try them out in the lab by pro-
gramming them into a PLD using CUPL development software.
Clocked flip flops can also be implemented using PLDs, but we will save this
topic for a later chapter.

State Transition Input for PLDs

You will recall that in Chapter 4 we mentioned three methods or forms for entering
circuit (hardware) data into PLD development software: logic equations, truth ta-
bles, and schematic. Now that we have introduced the state transition diagram in
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Section 5-19, it is appropriate that we also introduce you to the state transition en-
try method in CUPL. This method, which is also referred to as state machine entry,
allows the designer to identify each possible state of a counter and specify the de-
sired state after the next clock pulse.

This example shows how a binary counter that follows the state transition dia-
gram of Figure 5-47 can be implemented in a PLD. The CUPL input file is very sim-
ilar to the input file for a combinational example, as you can see in Figure 5-60.
Header information, inputs, and outputs are specified along with any desired com-
ments. The main difference is in the Hardware Description section. The keyword
sequence tells the compiler that we are using the state transition (state machine)
mode of hardware description. Next, a set of outputs is specified that is intended to
follow the sequence. Sets provide a way to group a list of variables that are associ-
ated with each other. The notation requires that the list of variables in the set be
placed in square brackets, i.e., [Q2, Q1, Q0. Following the set of variables, curly
brackets are used to enclose the eight state transition definitions. Each transition is
specified by the keyword present, which precedes each present state value (speci-
fied here in binary as indicated by the “b”) followed by the keyword next, and the
binary value of the desired next state.

It is not shown in the example of Figure 5-60, but CUPL allows a set of outputs
(or inputs) to be assigned a name called a field. This simply makes it easier to re-
fer to the entire set. For instance, the set of outputs in this example could be named
counter_out by the following statement:

field counter_out = [Q2, Q1, QO];

Any operation using counter_out will operate on the set of these three bits. CUPL
also offers preprocessor commands. These commands are read by the compiler
before operating on the rest of the source file. Most compilers offer preprocessor
commands as a convenient way to customize the source file. Preprocessor com-
mands always start with the first character $ located in column 1 of the source file.
They do not end with a semicolon. The most common preprocessor command is
$define. It allows you to replace any string of your choice with a valid CUPL syntax
operator, number, or symbol. By using $define commands you can give a name to
a constant number, change the # operator to +, or abbreviate keywords. Perhaps
the most important use of the $define statement allows constant numeric values to
be assigned a name at the top of the source file. If the value of the constant must be
revised at a later date, the change can be made universally in one place (i.e., in the
$define statement) even though the constant is used in several places in the source
file. This makes your code easier to modify and update if necessary for future proj-
ects. For example, the statements

$define StateA ‘b’000
$define StateB ‘b’001

$define StateH ‘br'1lll

will allow the use of the word “StateA” in place of ‘b’000, StateB in place of ‘b’001, and
so on. The $define and field directives are usually placed in the source file right after
the input/output pin assignments and before the hardware description statements. If
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N.S.Widmer ;
Purdue University;
Chapter 5 H
Chapter 5 5

j ;

*/

*/

/* pin 1 must be clock in for GAL 16V8*/

Name states.pld ; Designer
Partno 1234567 ; Company
Date June 2 ; Assembly
Revision 02 ; Location
Device G16v8 ; Format
* Simple 3-bit Binary UP counter example
/* INPUTS

PIN 1 = clock ;

/* OUTPUTS

PIN 12 = Q0 ;

PIN13=0Q1 ;

PIN14=Q2 ;

/* HARDWARE DESCRIPTION */

sequence [Q2, Q1, Q0]

present 'b'000
present 'b'001
present 'b'010
present 'b'011
present 'b'100
present 'b'101
present 'b'110
present 'b'111

}

next 'b'001;
next 'b'010;
next 'b'011;
next 'b'100;
next 'b'101;
next 'b'110;
next 'b'111;
next 'b'000;

*/

FIGURE 5-60 CUPL state transition input file for a simple counter.
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we used the above field and $define directives, the hardware description of Figure
5-60 could be changed to look as follows:

/* Hardware Description */
sequence counter_out;

{
present StateA next StateB;

present StateB next StateC;
present StateC next StateD;
present StateD next StateE;
present StateE next StateF;
present StateF next StateG;
present StateG next StateH;
present StateH next StateA;

}

If you can, go into the lab and try programming a PLD to operate as a 3-bit counter
using some of these new ideas.

1. Figure 5-6(a) is the NAND gate latch drawn using the standard representation
for NAND gates. Write the Boolean equations in CUPL syntax for this latch. If
a PLD is programmed from these equations, do you think it will operate the
same as the PLD programmed from Figure 5-59?

2. What is the distinguishing hardware feature of a latching logic circuit?

. What is the major characteristic of sequential cricuits?

4. What is the easiest way to enter a hardware description of a counter using
CUPL?

5. What is the keyword that allows CUPL te interpret a hardware description us-
ing the state transition or state machine entry mode?

W

6. What directive allows you to assign a name to a list or set of variables?
7. What directive allows you to assign a symbolic name to a constant value?

1. A flip-flop is a logic circuit with a memory characteristic such that its Q and Q
outputs will go to a new state in response to an input pulse and will remain in
that new state after the input pulse is terminated.

2. A NAND latch and a NOR latch are simple FFs that respond to logic levels on
their SET and CLEAR inputs.

3. Clearing (resetting) a FF means that its output ends up in the Q = 0/ o=1
state. Setting a FF means that it ends up in the Q = 1/Q = 0 state.

4. Clocked FFs have a clock input (CLK, CP, CK) that is edge-triggered, meaning
that it triggers the FF on a positive-going transition (PGT) or a negative-going
transition (NGD).

5. Edge-triggered (clocked) FFs can be triggered to a new state by the active edge
of the clock input according to the state of the FF’'s synchronous control inputs
(S, CorJ, Kor D).



248 o

Chapter 5 / Flip-Flops and Related Devices

6.

10.

11.

13.

Most clocked FFs also have asynchronous inputs that can set or clear the FF in-
dependently of the clock input.

. The D latch is a modified NAND latch that operates like a D flip-flop except that

it is not edge-triggered.

. Some of the principal uses of FFs include data storage and transfer, data shift-

ing, counting, and frequency division. They are used in sequential circuits that
follow a predetermined sequence of states.

. A one-shot is a logic circuit that can be triggered from its normal resting state

(Q = 0) to its triggered state (Q = 1) where it remains for a time interval pro-
portional to an RC time constant.

Circuits that have a Schmitt-trigger type of input will respond reliably to slow-
changing signals and will produce outputs with clean, sharp edges.

A variety of circuits can be used to generate clock signals at a desired frequency
including Schmitt-trigger oscillators, a 555 timer, and a crystal-controlled oscilla-
tor.

. A complete summary of the various types of FFs can be found on the inside

front cover.

Programmable logic devices can be programmed to operate as latching circuits
and sequential circuits.

IMPORTANT TERMS

PROBLEMS

flip-flop clocked J-K flip-flop binary counter
SET, CLEAR, RESET states/ toggle mode state table
inputs clocked D flip-flop state transition diagram

NAND gate latch

contact bounce

NOR gate latch

clock

positive-going transition
(PGD

negative-going transition
(NGT)

clocked flip-flop

edge-triggered

synchronous control inputs

setup time/hold time

clocked S-C flip-flop

trigger

pulse-steering circuit

edge-detector circuit

parallel data transfer
D latch
asynchronous inputs
override inputs
common-control block
propagation delay
master/slave flip-flop
registers
data transfer
synchronous transfer
asynchronous (jam)
transfer
sequential circuits
serial data transfer
shift register
frequency division

MOD number
Schmitt trigger
one-shot (OS)
quasi-stable state
nonretriggerable OS
retriggerable OS
astable multivibrator
555 timer

clock skew
preprocessor commands
field

set

sequence

SECTIONS 5-1 TO 5-3

B 5-1. Assuming that Q = 0 initially, apply the x and y waveforms of Figure 5-61 to

B

5-2.

the SET and CLEAR inputs of a NAND latch, and determine the Q and Q wave-
forms.

Invert the x and y waveforms of Figure 5-61, apply them to the SET and
CLEAR inputs of a NOR latch, and determine the Q and Q waveforms. As-
sume that Q = 0 initially.
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FIGURE 5-61 Problems 5-1 to 5-3. FIGURE 5-62 Problem 5-3.

5-3. The waveforms of Figure 5-61 are connected to the circuit of Figure 5-62. As-
sume that Q = 0 initially, and determine the Q waveform.

5-4. Modify the circuit of Figure 5-9 to use a NOR gate latch.

5-5. Modify the circuit of Figure 5-12 to use a NAND gate latch.

5-6. Refer to the circuit of Figure 5-13. A technician tests the circuit operation by

. observing the outputs with a storage oscilloscope while the switch is moved
from A to B. When the switch is moved from A to B, the scope display of Xjp
appears as shown in Figure 5-63. What circuit fault could produce this result?
(Hint: What is the function of the NAND latch?)

- O O

Xg

fe——1 ms ——]

FIGURE 5-63 Problem 5-6.

SECTIONS 5-4 AND 5-5
B 5-7. A certain clocked FF has minimum # = 20 ns and #; = 5 ns. How long must
the control inputs be stable prior to the active clock transition?
B 5-8. Apply the S, C, and CLK waveforms of Figure 5-17 to the FF of Figure 5-18,
and determine the Q waveform.
B 59. Apply the waveforms of Figure 5-64 to the FF of Figure 5-17 and determine
the waveform at Q. Repeat for the FF of Figure 5-18. Assume Q = 0 initially.

T
c L

CLK

FIGURE 5-64 Problem 5-9.
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SECTION 5-6
B 5-10. Apply the J, K, and CLK waveforms of Figure 5-21 to the FF of Figure 5-22. As-
sume that Q = 1 initially, and determine the Q waveform.
5-11. (@) Show how a J-K flip-flop can operate as a foggle FF (changes states on
each clock pulse). Then apply a 10-kHz clock signal to its CLK input and
determine the waveform at Q.
(b) Connect Q from this FF to the CIK input of a second J-K FF that also has
J = K = 1. Determine the frequency of the signal at this FF’s output.
B 5-12. The waveforms shown in Figure 5-65 are to be applied to two different FFs:
(a) positive-edge-triggered J-K
(b) negative-edge-triggered J-K
Draw the Q waveform response for each of these FFs, assuming that Q = 0
initially. Assume that each FF has #y = 0.

FIGURE 565 Problem 5-12.

SECTION 5-7
N 5-13. A D FF is sometimes used to delay a binary waveform so that the binary in-
formation appears at the output a certain amount of time after it appears at the
D input.
(@) Determine the Q waveform in Figure 5-66, and compare it with the input
waveform. Note that it is delayed from the input by one clock period.
(b) How can a delay of two clock periods be obtained?

Input
data

lw)

o
Q.
@
@

I |
0 ———
| | | | |

g

* *Assume ty(min) =0

FIGURE 5-66 Problem 5-13.

B 5-14. (@) Apply the S and CLK waveforms of Figure 5-64 to the D and CLK inputs
of a D FF that triggers on PGTs. Then determine the waveform at Q.
(b) Repeat using the C waveform of Figure 5-64 for the D input.
5-15. An edge-triggered D flip-flop can be made to operate in the toggle mode by
connecting it as shown in Figure 5-67. Assume that Q = 0 initially, and deter-
mine the Q waveform.
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FIGURE 567 D flip-flop connected to toggle FIGURE 568 Problem 5-18.

(Problems 5-15 and 5-16).

5-16. Change the circuit in Figure 5-67 so that Q is connected back to D. Then de-
termine the Q waveform.

SECTION 5-8
B 5:17. (a) Apply the Sand CLK waveforms of Figure 5-64 to the D and EN inputs of
a D latch, respectively, and determine the waveform at Q.
(b) Repeat using the C waveform applied to D.

5-18. Compare the operation of the D latch with a negative-edge-triggered D flip-
flop by applying the waveforms of Figure 5-68 to each and determining the Q
waveforms.

5-19. In Problem 5-15 we saw how an edge-triggered D flip-flop can be operated in
the toggle mode. Explain why this same idea will not work for a D latch.

SECTION 5-9

B 5-20. Determine the Q waveform for the FF in Figure 5-69. Assume that Q = 0
initially, and remember that the asynchronous inputs override all other inputs.

B 5-21. Apply the CIK, PRE, and CLR waveforms of Figure 5-30 to a positive-edge-
triggered D flip-flop with active-LOW asynchronous inputs. Assume that D is
kept HIGH and Q is initially LOW. Determine the Q waveform.

B 5-22. Apply the waveforms of Figure 5-69 to a D flip-flop that triggers on NGTs and
has active-LOW asynchronous inputs. Assume that D is kept LOW and that Q
is initially HIGH. Draw the resulting Q waveform.

1 l
CLK O_I-—I_I_U_L_I—-I_ 1 PRE

| | ] | o J Q o
1 L ] L 1
I I || || I I
CLR 0 | | | o——_)> CLK
1 | | | 1 _
| | I I o— K CLR Q pP—=e
1 . : . .
PRE !
0 |

FIGURE 5-69 Problem 5-20.
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SECTION 5-11
5-23. Use Table 5-2 in Section 5-11 to determine the following.
(a) How long can it take for the Q output of a 74C74 to switch from 0 to 1 in
response to an active CLK transition?
(b) Which FF in Table 5-2 requires its control inputs to remain stable for the
longest time after the active CLK transition? Before the transition?
(c) What is the narrowest pulse that can be applied to the PRE of a 7474 FF?
5-24. Refer to the circuit of Figure 5-70. It shows a 74HC112 IC with its two J-K flip-
flops connected in a certain way. Assume that initially Q) = Q, = 1, and, us-
ing Table 5-2, determine the fotal propagation delay between the NGT of the
clock pulse and the NGT of Q,.

i
Lt
0

2
74HC112 ) —OpCLK QLK
1 cLR Qi chmé
Q &
‘ GND
® 1 l *
1 ii 03 o s
cLock [ >— =

FIGURE 5-70 Connection diagram for Problem 5-24.

SECTIONS 5-15 AND 5-16

D 5-25. Modify the circuit of Figure 5-38 to use a J-K flip-flop.

D 5-26. In the circuit of Figure 5-71, inputs 4, B, and Care all initially LOW. Output Y
is supposed to go HIGH only when 4, B, and C go HIGH in a certain se-
quence.

(a) Determine the sequence that will make Y go HIGH.
(b) Explain why the START pulse is needed.
(©) Modify this circuit to use D FFs.

SECTIONS 5-17 AND 5-18
D 5-27. () Draw a circuit diagram for the synchronous parallel transfer of data from
one three-bit register to another using J-K flip-flops.
(b) Repeat for asynchronous parallel transfer.
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8 &—— > CLK > CLK

C & l K cLr I K cLr
(@] —

| l Start

FIGURE 5-71 Problem 5-26.

5-28.

5-29.

A recirculating shift register is a shift register that keeps the binary informa-
tion circulating through the register as clock pulses are applied. The shift reg-
ister of Figure 5-43 can be made into a circulating register by connecting X, to
the DATA IN line. No external inputs are used. Assume that this circulating
register starts out with 1011 stored in it (e, X3=1, X, =0, X; = 1, and
Xp = 1). List the sequence of states that the register FFs go through as eight
shift pulses are applied.

Refer to Figure 5-44, where a three-bit number stored in register X is serially
shifted into register Y. How could the circuit be modified so that at the end of
the transfer operation, the original number stored in X is present in both reg-
isters? (Hint: See Problem 5-28.)

SECTION 5-19

5-30.

5-31.

5-32.

5-33.

5-34.

Refer to the counter circuit of Figure 5-45 and answer the following:

(@) If the counter starts at 000, what will be the count after 13 clock pulses?
After 99 pulses? After 256 pulses?

(b) If the counter starts at 100, what will be the count after 13 pulses? After 99
pulses? After 256 pulses?

(©) Connect a fourth J-K FF (X3) to this counter and draw the state transition
diagram for this 4-bit counter. If the input clock frequency is 80 MHz,
what will the waveform at Xj look like?

Refer to the binary counter of Figure 5-45. Change it by connecting X, to the

CIK of flip-flop X;, and X; to the CIK of flip-flop X,. Start out with all FFs in

the 1 state, and draw the various FF output waveforms (X,, X;, X,) for 16 in-

put pulses. Then list the sequence of FF states as was done in Figure 5-46.

This counter is called a down counter. Why?

Draw the state transition diagram for this down counter, and compare it with

the diagram of Figure 5-47. How are they different?

(a) How many FFs are required to build a binary counter that counts from 0
to 1023?

(b) Determine the frequency at the output of the last FF of this counter for an
input clock frequency of 2 MHz.

(¢) What is the counter’s MOD number?

(d) If the counter is initially at zero, what count will it hold after 2060 pulses?

A binary counter is being pulsed by a 256-kHz clock signal. The output fre-

quency from the last FF is 2 kHz.

(a) Determine the MOD number.

(b) Determine the counting range.
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5-35. A photodetector circuit is being used to generate a pulse each time a customer
walks into a certain establishment. The pulses are fed to an eight-bit counter.
The counter is used to count these pulses as a means for determining how
many customers have entered the store. After closing the store, the proprietor
checks the counter and finds that it shows a count of 00001001, = 9,,. He
knows that this is incorrect, because there were many more than nine people
in his store. Assuming that the counter circuit is working properly, what could
be the reason for the discrepancy?

SECTION 5-20

5-36. Modify the circuit of Figure 5-48 so that only the presence of address code
10110110 will allow data to be transferred to register X.

5-37. Suppose that the circuit of Figure 5-48 is malfunctioning so that data are being
transferred to X for either of the address codes 11111110 or 11111111. What
are some circuit faults that could be causing this?

5-38. Modify the circuit of Figure 5-48 so that the MPU has eight data output lines
connected to transfer eight bits of data to an eight-bit register made up of two
74HC175 ICs [Figure 5-32(b)]. Show all circuit connections.

SECTION 5-22

5-39. Refer to the waveforms in Figure 5-51(a). Change the OS pulse duration to 0.5
ms and determine the Q output for both types of OS. Then repeat using a OS
pulse duration of 1.5 ms.

5-40. Figure 5-72 shows three nonretriggerable one-shots connected in a timing
chain that produces three sequential output pulses. Note the “1” in front of the
pulse on each OS symbol to indicate nonretriggerable operation. Draw a tim-
ing diagram showing the relationship between the input pulse and the three
OS outputs. Assume an input pulse duration of 10 ms.

1J_Lo1—| 1_J—|_ozr] TL o —e
1
0 | | o> T OS DT 0Ss T OSs

tp=5ms Q t, =20 ms Q, t,=10ms Qs

FIGURE 5-72  Problem 5-40.

5-41. A retriggerable OS can be used as a pulse-frequency detector that detects
when the frequency of a pulse input is below a predetermined value. A sim-
ple example of this application is shown in Figure 5-73. The operation begins
by momentarily closing switch SW1.

(@) Describe how the circuit responds to input frequencies above 1 kHz.

(b) Describe how the circuit responds to input frequencies below 1 kHz.

(¢) How would you modify the circuit to detect when the input frequency
drops below 50 kHz?

5-42. Refer to the logic symbol for a 74121 nonretriggerable one-shot in Figure 5-52(a).
(&) What input conditions are necessary for the OS to be triggered by a signal

at the B input?
(b) What input conditions are necessary for the OS to be triggered by a signal
at the A, input?
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FIGURE 5-73 Problem 5-41.

D, C 5-43. The output pulse width from a 74121 OS is given by the approximate formula

t, =~ 0.7 ReCr

where Rr is the resistance connected between the Rex/ Cgxr pin and Vi, and

Cr is the capacitance connected between the Cgxy pin and the Rgxy/ Cexr pin.

The value for Ry can be varied between 2 and 40 k{), and Cr can be as large

as 1000 pF.

(@) Show how a 74121 can be connected to produce a negative-going pulse
with a 5-ms duration whenever either of two logic signals (E or F) makes
a NGT. Both E and F are normally in the HIGH state.

(b) Modify the circuit so that a control input signal, G, can disable the OS out-
put pulse regardless of what occurs at E or F.

SECTION 5-23

5-44.

Consider the circuit of Figure 5-74. Initially all FFs are in the 0 state. The cir-
cuit operation begins with a momentary start pulse applied to the PRESET in-
puts of FFs X and Y. Determine the waveforms at 4, B, C, X, Y, Z, and W for
20 cycles of the clock pulses after the start pulse. State all assumptions.

SECTION 5-24

5-45.
5-46.

5-47.

5-48.

Show how to use a 74LS14 Schmitt-trigger INVERTER to produce an approxi-

mate square wave with a frequency of 10 kHz.

Design a 555 free-running oscillator to produce an approximate square wave

at 40 kHz. C should be kept at 500 pF or greater.

A 555 oscillator can be combined with a J-K flip-flop to produce a perfect (50

percent duty cycle) square wave. Modify the circuit of Problem 5-46 to in-

clude a J-K flip-flop. The final output is still to be a 40-kHz square wave.

The circuit in Figure 5-75 can be used to generate two nonoverlapping clock

signals at the same frequency. These clock signals are used in some micro-

processor systems that require four different clock transitions to synchronize

their operations.

(@) Draw the CP1 and CP2 timing waveforms if CLOCK is a 1-MHz square
wave. Assume that #y; and g are 20 ns for the FF and 10 ns for the
AND gates.
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FIGURE 5-74 Problem 5-44.

+5V

CLOCK >—e—+—OP> CLK

—ix
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CcP2
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—

FIGURE 5-75 Problem 5-48.

(b) This circuit would have a problem if the FF were changed to one that re-
sponds to a PGT at CLK. Draw the CP1 and CP2 waveforms for that situa-
tion. Pay particular attention to conditions that can produce glitches.

SECTION 5-25
T 5-49. Refer to the counter circuit in Figure 5-45. Assume that all asynchronous in-
puts are connected to V.. When tested, the circuit waveforms appear as
shown in Figure 5-76. Consider the following list of possible faults. For each
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FIGURE 5-76 Problem 5-49.

T 5-50.

C9 T 5'51

D 5-52.

T 5-53.

T 5-54.

one indicate “yes” or “no” as to whether it could cause the observed results.
Explain each response.
(@) CILRinput of X; is open.
(b) X, output’s transition times are too long, possibly due to loading.
(©) X, output is shorted to ground.
(d) X,’s hold time requirement is not being met.
Refer to the circuit of Figure 5-44. All FFs are TTL ICs. Assume the following
initial conditions: X,X; X, = 100 and Y,Y; ¥, = 011. After four shift pulses, the
conditions are XX, X, = 001 and Y,Y; ¥, = 111. Subsequent shift pulses pro-
duce no change in any of the FFs. What are some of the possible causes of
this faulty operation?
Consider the situation of Figure 5-58 for each of the following sets of timing
values. For each, indicate whether or not flip-flop Q, will respond correctly.
(@) Each FF: fpiy = 12 1S; tpyp, = 8 1nS; & = 5 ns; iy = 0 ns

NAND gate: fpr g = 8 ns; o = 6 ns

INVERTER: fopyy = 7 DS} g = 5 1S
(b) Each FF: fp1y = 10 ns; fpyyp, = 8 1S5 & = 5 ns; fy = 0 ns

NAND gate: &1y = 12 ns; fpyp = 10 ns

INVERTER: fpiy = 8 ns; fpyy, = 6 ns
Show and explain how the clock skew problem in Figure 5-58 can be elimi-
nated by the appropriate insertion of two INVERTERSs.
Refer to the circuit of Figure 5-53. Describe how the circuit operation will
change for each of the following faults.
() An internal short to ground at the NAND gate’s top input
(b) An open connection to the Jinput of FF Z
(¢) An open connection to the bottom input of the NAND gate
Refer to the circuit of Figure 5-77. Assume that the ICs are of the TTL logic
family. The Q waveform was obtained when the circuit was tested with the in-
put signals shown and with the switch in the “up” position; it is not correct.
Consider the following list of faults, and for each indicate “yes” or “no” as to
whether it could be the actual fault. Explain each response.
(a) Point X is always LOW due to a faulty switch.
(b) Z1 pin 1 is internally shorted to V(.
(¢) The connection from Z1-3 to Z2-3 is broken.
(d) There is a solder bridge between pins 6 and 7 of Z1.
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FIGURE 5-77 Problem 5-54.

C 5-55. The circuit of Figure 5-78 functions as a sequential combination lock. To op-
erate the lock, proceed as follows:

1. Momentarily activate the RESET switch.

2. Set the switches SWA, SWB, and SWC to the first part of the combination.
Then momentarily toggle the ENTER switch back and forth.

3. Set the switches to the second part of the combination, and toggle ENTER
again. This should produce a HIGH at Q, to open the lock.

If the incorrect combination is entered in either step, the operator must
start the sequence over. Analyze the circuit and determine the correct se-
quence of combinations that will open the lock.

C, T 5-56. When the combination lock of Figure 5-78 is tested, it is found that entering
the correct combination does not open the lock. A logic probe check shows
that entering the correct first combination sets Q, HIGH, but entering the cor-
rect second combination produces only a momentary pulse at Q,. Consider
each of the following faults and indicate which one(s) could produce the ob-
served operation. Explain each choice.

(a) Switch bounce at SWA, SWB, or SWC.


Albustani
Rechteck



Problems e 259

+VCC

SWA I__
—-o/o——¢ 1 2 | D Q
SWB l_
/ P -+
1 swe —P> CLK
= —VW\—e +Vcc
CLR +Vee
RESET
CLR =
D Q, —» OPEN LOCK
—> CLK

FIGURE 5-78 Problems 5-55 and 5-56.

(b) CLR input of Q, is open.
(¢) Connection from NAND gate 4 output to NAND gate 3 input is open.

DRILL QUESTIONS

B 5-57. For each statement indicate what type of FF is being described.
(a) Has a SET and a CLEAR input but does not have a CLK input
(b) Will toggle on each CLK pulse when its control inputs are both HIGH
(c) Has an ENABLE input instead of a CLK input
(d) Is used to transfer data easily from one FF register to another
(e) Has only one control input
() Has two outputs that are complements of each other
(8 Can change states only on the active transition of CLK
(h) Is used in binary counters

B 5-58. Define the following terms.
(a) Asynchronous inputs
(b) Edge-triggered
(c) Shift register
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(d) Frequency division
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(e) Asynchronous (jam) transfer
(® State transition diagram

(g) Parallel data transfer
(h) Serial data transfer

() Retriggerable one-shot

() Schmitt-trigger inputs

SECTION 5-26

B 5-59. Look at the NOR latch in Figure 5-10(a) and write the CUPL equations for

each output.

C 5-60. Write a CUPL source file that has an active-LOW input SC latch, an active-
HIGH input SC latch, and a level-triggered D latch for a GAL16V8 PLD.
C 5-61. Modify the CUPL source file of Figure 5-60 make the binary counter count

down instead of up.

C 5-62. Modify the CUPL source file of Figure 5-60 to make the counter into a 4-bit,
MOD-10 counter which counts from 0000 (zero) to 1001 (nine) and then re-
cycles back to 0000. All six of the illegal states (in the event they occur)
should advance to 0000 on the next clock pulse.

ANSWERS TO SECTION REVIEW QUESTIONS

SECTION 5-1
1. HIGH; LOW 2. 0=0,0=1 3. True
4. Apply a momentary LOW to SET input.

SECTION 5-2

1. LOW,HIGH 2. Q=1and Q=0 3. Make
CLEAR =1 4. SET and CLEAR would both be
normally in their active-LOW state.

SECTION 5-4

1. Synchronous control inputs and clock input

2. The FF output can change only when the appropriate
clock transition occurs. 3. False 4. Setup time is
the required interval immediately prior to the active
edge of the CLK signal during which the control inputs
must be held stable. Hold time is the required interval
immediately following the active edge of CLK during
which the control inputs must be held stable.

SECTION 5-5

1. HIGH; LOW; HIGH 2. Because CLK* is HIGH
only for a few nanoseconds

SECTION 5-6
1. True 2. No 3./=1,K=0
SECTION 5-7

1. Q will go LOW at point @ and remain LOW.

2. False. The D input can change without affecting Q
because Q can change only on the active CLK edge.
3. Yes, by converting to D FFs (Figure 5-25).

SECTION 5-8

1. In a D latch the Q output can change while EN is
HIGH. In a D flip-flop the output can change only on
the active edge of CLK. 2. False 3. True

SECTION 5-9

1. Asynchronous inputs work independently of the CLK
input. 2. Yes, since PRE is active-LOW
3. /= K= 1, PRE = CLR = 1, and a PGT at CLK

SECTION 5-10

1. The triangle inside the rectangle indicates edge-
triggered operation; the right triangle outside the
rectangle indicates triggering on a NGT. 2. It is used
to indicate the function of those inputs that are common
to more than one circuit on the chip.

SECTION 5-11
1. oy and fpy 2. False; the waveform must also
satisfy #yx(D) and £, (H) requirements.

SECTION 5-17

1. False 2. D flip-flop 3. Six 4. True

SECTION 5-18

1. True 2. Fewer interconnections between registers
3. XXX, = 111; Y, Y, = 101 4. Parallel
SECTION 5-19

1. 10 kHz 2. Eight 3. 256 4. 2kHz

5. 00001000, = 8¢
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Answers to Section Review Questions

SECTION 5-21

1. The output may contain oscillations. 2. Tt will
produce clean, fast output signals even for slow-
changing input signals.

SECTION 5-22

1. 0=0,0=1 2. True 3. External Rand C
values 4. For a retriggerable OS, each new trigger
pulse begins a new ¢, interval regardless of the state of
the Q output.

SECTION 5-24
1. 24 kHz 2. 109.3 kHz; 66.7 percent
3. Frequency stability

&
N
=]
—

SECTION 5-25

1. Clock skew is the arrival of a clock signal at the CLK
inputs of different FFs at different times. It can cause a
FF to go to an incorrect state.

SECTION 5-26

1. Q = NSET & QBAR); QBAR = I(CLEAR & Q);
Yes, it is a different representation of the same circuit.
2. Feedback: The outputs are combined with the inputs
to determine the next state of the outputs. 3. It
progresses through a predetermined sequence of states
in response to an input clock signal. 4. State

transition entry mode. 5. Sequence 6. Field
7. $define
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B OBJECTIVES

Upon completion of this chapter, you will be able to:

® Perform binary addition, subtraction, multiplication, and division on two binary
numbers.

B Add and subtract hexadecimal numbers.
® Know the difference between binary addition and OR addition.

B Compare the advantages and disadvantages among three different systems of
representing signed binary numbers.

B Manipulate signed binary numbers using the 2’s-complement system.

m Understand the BCD adder circuit and the BCD addition process.

B Describe the basic operation of an arithmetic/logic unit.

® Employ full adders in the design of parallel binary adders.

B (Cite the advantages of parallel adders with the look-ahead carry feature.
B Explain the operation of a parallel adder/subtractor circuit.

B Use an ALU integrated circuit to perform various logic and arithmetic operations
on input data.

B Read and understand the IEEE/ANSI symbol for a parallel adder.
B Analyze troubleshooting case studies of adder/subtractor circuits.
B Program a PLD to operate as a 4-bit full adder.

B INTRODUCTION

Digital computers and calculators perform the various arithmetic operations on
numbers that are represented in binary form. The subject of digital arithmetic can
be a very complex one if we want to understand all of the various methods of com-
putation and the theory behind them. Fortunately, this level of knowledge is not re-
quired by most technicians, at least not until they become experienced computer
programmers. Our approach in this chapter will be to concentrate on those basic
principles that are needed to understand how digital machines (i.e., computers)
perform the basic arithmetic operations.
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First we will see how the various arithmetic operations are performed on bi-
nary numbers using “pencil and paper,” and then we will study the actual logic cir-
cuits that perform these operations in a digital system.

[ S e P

L LI

[

LI

0-1 BINARY ADDITION

264

The addition of two binary numbers is performed in exactly the same manner as the
addition of decimal numbers. In fact, binary addition is simpler, since there are
fewer cases to learn. Let us first review decimal addition:

3 7 6 LSD
+4 6 1
8 3 7

The least-significant-digit (LSD) position is operated on first, producing a sum of
7. The digits in the second position are then added to produce a sum of 13, which
produces a carry of 1 into the third position. This produces a sum of 8 in the third
position.

The same general steps are followed in binary addition. However, only four
cases can occur in adding the two binary digits (bits) in any position. They are:

0+0=0

1+0=1

1+ 1 =10 =0 + carry of 1 into next position
1+ 1+ 1=11= 1+ carry of 1 into next position

The last case occurs when the two bits in a certain position are 1 and there is a carry
from the previous position. Here are several examples of the addition of two binary
numbers (decimal equivalents are in parentheses): :

011 (3) 1001 (9) 11.011 (3.375)
+ 110 (6) + 1111 (15) + 10.110 (2.750)
1001 (9) 11000 (24) 110.001 (6.125)

It is not necessary to consider the addition of more than two binary numbers at _
a time, because in all digital systems the circuitry that actually performs the addition
can handle only two numbers at a time. When more than two numbers are to be
added, the first two are added together and then their sum is added to the third
number, and so on. This is not a serious drawback, since modern digital computers
can typically perform an addition operation in several nanoseconds.

Addition is the most important arithmetic operation in digital systems. As we
shall see, the operations of subtraction, multiplication, and division as they are per-
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formed in most modern digital computers and calculators actually use only addition
as their basic operation.

- Review Question 1. Add the following pairs of binary numbers.

(2 10110 + 00111 (b) 011.101 + 010.010 . () 10001111 + 00000001

6-2 REPRESENTING SIGNED NUMBERS

In digital computers, the binary numbers are represented by a set of binary storage
devices (e.g., flip-flops). Each device represents one bit. For example, a six-bit FF
register could store binary numbers ranging from 000000 to 111111 (0 to 63 in dec-
imal). This represents the magnitude of the number. Since most digital computers
and calculators handle negative as well as positive numbers, some means is re-
quired for representing the sign of the number (+ or —). This is usually done by
adding to the number another bit called the sign bit. In general, the common con-
vention which has been adopted is that a 0 in the sign bit represents a positive num-
ber and a 1 in the sign bit represents a negative number. This is illustrated in Figure
6-1. Register A contains the bits 0110100. The 0 in the leftmost bit (4s) is the sign bit
that represents +. The other six bits are the magnitude of the number 110100,,
which is equal to 52 in decimal. Thus, the number stored in the A register is +52.
Similarly, the number stored in the B register is —52, since the sign bit is 1, repre-
senting —.

The sign bit is used to indicate the positive or negative nature of the stored bi-
nary number. The numbers in Figure 6-1 consist of a sign bit and six magnitude bits.
The magnitude bits are the true binary equivalent of the decimal value being repre-
sented. This is called the sign-magnitude system for representing signed binary
numbers.

Although the sign-magnitude system is straightforward, calculators and comput-
ers do not normally use it, because the circuit implementation is more complex than
in other systems. The most commonly used system for representing signed binary
numbers is the 2’s-complement system. Before we see how this is done, we must
first see how to form the 1’s complement and 2’s complement of a binary number.

FIGURE 6-1 Representation of Ag Asg Ay Ag A, A, Ay

signed numbers in sign-
magnitude form.

0 1 1 0 1 0 0 =+5249
T N p
] '
Sign bit {+) Magnitude = 5210

1 1 1 0 1 0 0 | =-524

Sign bit () Magnitude = 52,

~
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1’s-Complement Form

The 1’s complement of a binary number is obtained by changing each 0 to a 1 and
each 1 to a 0. In other words, change each bit in the number to its complement. The
process is shown below.

original binary number

1 01
L4
010

O

0
{
1

(=

complement each bit to form 1’s complement

Thus, we say that the 1’s complement of 101101 is 010010.

2’s Complement Form

The 2’s complement of a binary number is formed by taking the 1’s complement of
the number and adding 1 to the least-significant-bit position. The process is illus-
trated below for 101101, = 45,,.

101101 binary equivalent of 45
010010 complement each bit to form 1’s complement
+ 1 add 1 to form 2’s complement

010011 2's complement of original binary number

Thus, we say that 010011 is the 2’s complement representation of 101101.
Here’s another example of converting a binary number to its 2’s-complement
representation:

101100 original binary number
010011 1’s complement
+ 1 add 1
010100 2’s complement of original number

Representing Signed Numbers Using 2's Complement
The 2’s-complement system for representing signed numbers works like this:

B If the number is positive, the magnitude is represented in its true binary form,
and a sign bit of 0 is placed in front of the MSB. This is shown in Figure 6-2 for

+4510.
FIGURE 62 Representation of
signed numbers in the 2's- 0 1 0 1 1 0 1 | =+459
complement system. C 5
~
Sign bit (+) True binary
10 |1 oo |1 1 |=-484
- J
~

Sign bit (-) 2's complement
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W If the number is negative, the magnitude is represented in its 2’s-complement
form, and a sign bit of 1 is placed in front of the MSB. This is shown in Figure
6-2 for —454.

The 2’'s-complement system is used to represent signed numbers because, as
we shall see, it allows us to perform the operation of subtraction by actually per-
forming addition. This is significant because it means that a digital computer can use
the same circuitry both to add and subtract, thereby realizing a saving in hardware.

Represent each of the following signed decimal numbers as a signed binary
number in the 2’s-complement system. Use a total of five bits including the sign
bit.

@ +13 M -9 © +3 @ -2 () -8

Solution

(@) Since the number is positive, the magnitude (13) will be represented in its true-
magnitude form, that is, 13 = 1101,. Attaching the sign bit of 0, we have

+13 = 01101
sign bit

(b) Since the number is negative, the magnitude (9) must be represented in 2’s-
complement form:

910 = 10012
0110 (I’s complement)
+ 1 (add 1 to LSB)

0111 (2's complement)
When we attach the sign bit of 1, the complete signed number becomes

=9 =10111
sign bit

The procedure we have just followed required two steps. First we determined
the 2’s complement of the magnitude, and then we attached the sign bit. This can
be accomplished in one step if we include the sign bit in the 2’s-complement
process. For example, to find the representation for —9, we start with the
representation for +9, including the sign bit, and we take the 2’s complement of it
in order to obtain the representation for —9.

+9 = 01001
10110 (1's complement of each bit including sign bit)
+ 1 (add 1 to LSB)

-9 = 10111 (2's-complement representation of —9)

The result is, of course, the same as before.
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(c) The decimal value 3 can be represented in binary using only two bits. However,
the problem statement requires a four-bit magnitude preceded by a sign bit.

Thus, we have

+3,5 = 00011

In many situations the number of bits is fixed by the size of the registers that
will be holding the binary numbers, so that 0s may have to be added in order
to fill the required number of bit positions.

(d) Start by writing +2 using five bits:

+2 = 00010
11101 (I’s complement)

+ 1 (add D
-2 = 11110 (2's-complement representation of —2)

(e) Start with +8:

+8 = 01000
10111 (complement each bit)

+ 1 (add 1)

—8 = 11000 (2’s-complement representation of —8)

Negation

Negation is the operation of converting a positive number to its negative equivalent
or a negative number to its positive equivalent. When signed binary numbers are
represented in the 2’s-complement system, negation is performed simply by per-
forming the 2’s-complement operation. To illustrate, let’s start with +9. Its signed
representation is 01001. If we 2’s-complement this, we get 10111. Clearly, this is a
negative number since the sign bit is a 1. Actually, 10111 represents —9, which is
the negative equivalent of the number we started with. Likewise, we can start with
the representation for —9, which is 10111. If we 2’s-complement this, we get 01001,
which we recognize as +9. These steps are diagrammed below.

start with — 01001 +9

2’s-complement (negate) — 10111 = -9
negate again — 01001 = +9

I

Thus, we negate a signed binary number by 2’s-complementing it.

This negation changes the number to its equivalent of opposite sign. We used nega-
tion in steps (d) and (e) of Example 6-1 to convert positive numbers to their nega-

tive equivalents.

Each of the following numbers is a signed binary number in the 2’s-complement
system. Determine the decimal value in each case:
(@) 01100 (b) 11010 (c) 10001
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Solution

(@) The sign bit is 0, so the number is positive and the other four bits represent the
true magnitude of the number. That is, 1100, = 12;,. Thus, the decimal number
is +12.

(b) The sign bit of 11010 is a 1, so we know that the number is negative, but we
can't tell what the magnitude is. We can find the magnitude by negating (2’s-
complementing) the number to convert it to its positive equivalent.

11010 (original negative number)
00101 (1's complement)
+ 1 (add D

00110 (+6)

Since the result of the negation is 00110 = +6, the original number 11010
must be equivalent to —6.

(©) Follow the same procedure as in (b):

10001 (original negative number)
01110 (I’s complement)
+ 1 (add D

01111 (+15)

Thus, 10001 = —15.

Special Case in 2's-Complement Representation

Whenever a signed number has a 1 in the sign bit and all Os for the magnitude bits,
its decimal equivalent is —2”, where N is the number of bits in the magnitude. For
example,

1000 = —2° = -8
10000 = -2 = —16
100000 = —2° = —32

and so on.
Thus, we can state that the complete range of values that can be represented in
the 2’s-complement system having N magnitude bits is

—2Yt0 +2V -1

There are a total of 2" different values, including zero.

For example, Table 6-1 lists all signed numbers that can be represented in four
bits using the 2’s-complement system (note there are three magnitude bits, so N =
3). Note that the sequence starts at —2" = —2° = —8,, = 1000, and proceeds up-
wards to +(2~ — 1) = +2° — 1 = +7,, = 0111, by adding 0001 at each step as in
an up counter.
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TABLE 6-1

+7=22-1 0111

+6 0110
+5 0101
+4 0100
+3 0011
+2 0010
+1 0001

0 0000
-1 1111
-2 1110
-3 1101
—4 1100
-5 1011
-6 1010
-7 1001
-8 =-2° 1000

What is the range of unsigned decimal values that can be represented in a byte?

Solution

Recall that a byte is eight bits. Since we are interested in unsigned numbers here,
there is no sign bit, so all of the eight bits are used for the magnitude. Therefore,
the values will range from

00000000, = 050
o
11111111, = 25540

This is a total of 256 different values, which we could have predicted since 28 =
256.

What is the range of signed decimal values that can be represented in a byte?

Solution

Since the MSB is to be used as the sign bit, there are seven bits for the magnitude.
The largest negative value is

10000000, = —27 = —128,,
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The largest positive value is
01111111, = +27 — 1 = +127;,

Thus, the range is —128 to +127; this is a total of 256 different values, including
zero. Alternatively, since there are seven magnitude bits (V= 7), then there are
2N = 28 = 256 different values.

EXAMPLE

6-5

Review Questions

A certain computer is storing the following two signed numbers in its memory
using the 2’s-complement system:

111101002 - 1210

While executing a program, the computer is instructed to convert each number to
its opposite sign; that is, change the +31 to —31 and change the —12 to +12.
How will it do this?

Solution

This is simply the negation operation whereby a signed number can have its
polarity changed simply by performing the 2’s-complement operation on the
complete number, including the sign bit. The computer circuitry will take the
signed number from memory, find its 2’s complement, and put the result back in
memory.

ot

. Represent each of the following values as an eight-bit signed number in the
2’s-complement system.

@ +13 ®» -7 (© —128

2. Each of the following is a signed binary number in the 2’s-complement sys-
tem. Determine the decimal equivalent for each.

(2) 100011 (b) 1000000 (o) 01111110

3. What range of signed decimal values can be represented in 12 bits (including
the sign bit)?

4. How many bits are required to represent decimal values ranging from —50 to
+50?

5. What is the largest negative decimal value that can be represented by a two-
byte number?

6. Perform the 2’s-complement operation on each of the following.
(a) 10000 (b) 10000000 (c) 1000

7. Define the negation operation.
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6-3 ADDITION IN THE 2’s-COMPLEMENT SYSTEM

We will now investigate how the operations of addition and subtraction are per-
formed in digital machines that use the 2's-complement representation for negative
numbers. In the various cases to be considered, it is important to note that the sign
bit of each number is operated on in the same manner as the magnitude bits.

Case I: Two Positive Numbers. The addition of two positive numbers is straight-
forward. Consider the addition of +9 and +4:

-------

+9 — 0 1001 (augend)
+4 > 10 0100 (addend)
{0} 1101  (sum = +13)

______

T sign bits

Note that the sign bits of the augend and the addend are both 0 and the sign bit of
the sum is 0, indicating that the sum is positive. Also note that the augend and the

“addend are made to have the same number of bits. This must a/ways be done in the

2’s-complement system.

Case II: Positive Number and Smaller Negative Number. Consider the addition of
+9 and —4. Remember that the —4 will be in its 2’s-complement form. Thus, +4
(00100) must be converted to —4 (11100).

r sign bits
i 01 1001 (augend)
—4— {1} 1100  (addend)

.......

1 0101
LThlS carry is disregarded; the result is 00101 (sum = +5).

In this case, the sign bit of the addend is 1. Note that the sign bits also participate in
the addition process. In fact, a carry is generated in the last position of addition.
This carry is always disregarded, so that the final sum is 00101, which is equivalent

to +5.

Case III: Positive Number and Larger Negative Number. Consider the addition of
—9 and +4:

-9 — 10111
+4 —> 00100

11011 (sum = —5)
T negative sign bit

The sum here has a sign bit of 1, indicating a negative number. Since the sum is
negative, it is in 2’s-complement form, so that the last four bits, 1011, actually rep-
resent the 2’s complement of the sum. To find the true magnitude of the sum, we
must negate (2’s-complement) 11011; the result is 00101 = +5. Thus, 11011 repre-

sents —5.
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Case IV: Two Negative Numbers

-9 — 10111
—4 > 11100
1 10011

sign bit

This carry is disregarded; the result is 10011 (sum = —13).

This final result is again negative and in 2’s-complement form with a sign bit of 1.
Negating (2’s-complementing) this result produces 01101 = +13.

Case V: Equal and Opposite Numbers

-9 10111
+9 > 01001
0 1 00000

Disregard; the result is 00000 (sum = +0).

The result is obviously +0, as expected.

LCGTVRIITEE TR Assume the 2's-complement system for both questions.
1. True or false: Whenever the sum of two signed binary numbers has a sign bit
of 1, the magnitude of the sum is in 2’s-complement form.
2. Add the following pairs of signed numbers. Express the sum as a signed bi-
nary number and as a decimal number.

(a) 100111 + 111011 (b) 100111 + 011001

6-4 SUBTRACTION IN THE 2’s-COMPLEMENT SYSTEM

The subtraction operation using the 2’s-complement system actually involves the
operation of addition and is really no different from the various cases for addition
considered in Section 6-3. When subtracting one binary number (the subtrahend)
from another binary number (the minuend), use the following procedure:

1. Negate the subtrahend. This will change the subtrahend to its equivalent value of
opposite sign.

2. Add this to the minuend. The result of this addition will represent the difference
between the subtrahend and the minuend.

Once again, as in all 2’s-complement arithmetic operations, it is necessary that both
numbers have the same number of bits in their representations.
Let us consider the case where +4 is to be subtracted from +9.

minuend (+9) —» 01001
subtrahend (+4) — 00100
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Negate the subtrahend to produce 11100, which represents —4. Now add this to the
minuend.

01001 (+9)
+ 11100 (-9
100101  (+5)
tDisregard, so the result is 00101 = +5.

When the subtrahend is changed to its 2’s complement, it actually becomes —4,
so that we are adding —4 and +9, which is the same as subtracting +4 from +9.
This is the same as case II of Section 6-3. Any subtraction operation, then, actually
becomes one of addition when the 2’s-complement system is used. This feature
of the 2’s-complement system has made it the most widely used of the methods
available, since it allows addition and subtraction to be performed by the same
circuitry.
Here’s another example showing +9 subtracted from —4:

11100 (—4)
—01001 (+9)

Negate the subtrahend (+9) to produce 10111 (—9) and add this to the minu-
end (—4).

11100 (-4
+10111  (=9)
110011 (—13)
tDisregard

The reader should verify the results of using the above procedure for the fol-
lowing subtractions: (@) +9 — (—=4); (b) =9 — (+4); (© —9 — (—49); (D +4 —
(—4). Remember that when the result has a sign bit of 1, it is negative and in 2’s-
complement form.

Arithmetic Overflow

In each of the previous addition and subtraction examples, the numbers that were
added consisted of a sign bit and four magnitude bits. The answers also consisted of
a sign bit and four magnitude bits. Any carry into the sixth bit position was disre-
garded. In all of the cases considered, the magnitude of the answer was small
enough to fit into four bits. Let’s look at the addition of +9 and +8.

+9— (0 1001
+8— (0 : 1000

incorrect sign ) T incorrect magnitude

The answer has a negative sign bit, which is obviously incorrect since we are adding
two positive numbers. The answer should be +17, but the magnitude 17 requires
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more than four bits and therefore overflows into the sign-bit position. This overflow
condition can occur only when two positive or two negative numbers are being
added, and it always produces an incorrect result. Overflow can be detected by
checking to see that the sign bit of the result is the same as the sign bits of the num-
bers being added.

Since subtraction in the 2’s-complement system is performed by negating the
minuend and adding it to the subtrahend, overflow can occur only when the minu-
end and subtrahend have different signs. For example, if we are subtracting —8
from +9, the —8 is negated to become +8 and is added to +9 just as shown above,
and overflow produces an erroneous negative result since the magnitude is too
large.

A computer will have a special circuit to detect any overflow condition when
two numbers are added or subtracted. This detection circuit will signal the com-
puter’s control unit that overflow has occurred and the result is incorrect. We will
examine such a circuit in an end-of-chapter problem.

Review Questions 1. Perform the subtraction on the following pairs of signed numbers using the

2's-complement system. Express the results as signed binary numbers and as
decimal values.
(@ 01001 — 11010 (b) 10010 — 10011

2. How can arithmetic overflow be detected when signed numbers are being
added? Subtracted?

6-3 MULTIPLICATION OF BINARY NUMBERS

The multiplication of binary numbers is done in the same manner as the multiplica-
tion of decimal numbers. The process is actually simpler, since the multiplier digits
are either 0 or 1 and so we are always multiplying by 0 or 1 and no other digits. The
following example illustrates for unsigned binary numbers:

1001 « multiplicand = 94
1011 « multiplier = 11,
1001
1001 :
0000 partial products
1001
1100011 } final product = 99;,

In this example the multiplicand and the multiplier are in true binary form and no
sign bits are used. The steps followed in the process are exactly the same as in dec-
imal multiplication. First, the LSB of the multiplier is examined; in our example it is
a 1. This 1 multiplies the multiplicand to produce 1001, which is written down as
the first partial product. Next, the second bit of the multiplier is examined. It is a 1,
and so 1001 is written for the second partial product. Note that this second partial
product is shifted one place to the left relative to the first one. The third bit of the
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multiplier is 0, and 0000 is written as the third partial product; again, it is shifted one
place to the left relative to the previous partial product. The fourth multiplier bit is
1, and so the last partial product is 1001 shifted again one position to the left. The
four partial products are then summed to produce the final product.

Most digital machines can add only two binary numbers at a time. For this rea-
son, the partial products formed during multiplication cannot all be added together
at the same time. Instead, they are added together two at a time; that is, the first is
added to the second, their sum is added to the third, and so on. This process is now
illustrated for the example above:

Add { 1001 < first partial product
1001  « second partial product shifted left
Add { 11011 « sum of first two partial products
0000 « third partial product shifted left
Add { 011011 « sum of first three partial products
1001 « fourth partial product shifted left

1100011 « sum of four partial products which
equals final total product

Multiplication in the 2’s-Complement System

In computers that use the 2’s-complement representation, multiplication is carried
on in the manner described above provided that both the multiplicand and the mul-
tiplier are put in true binary form. If the two numbers to be multiplied are positive,
they are already in true binary form and are multiplied as they are. The resulting
product is, of course, positive and is given a sign bit of 0. When the two numbers
are negative, they will be in 2’s-complement form. The 2’s complement of each is
taken to convert it to a positive number, and then the two numbers are multiplied.
The product is kept as a positive number and is given a sign bit of 0.

When one of the numbers is positive and the other is negative, the negative
number is first converted to a positive magnitude by taking its 2's complement. The
product will be in true-magnitude form. However, the product must be negative,
since the original numbers are of opposite sign. Thus, the product is then changed
to 2’s-complement form and is given a sign bit of 1.

Review Question 1. Multiply the unsigned numbers 0111 and 1110.

6-6 BINARY DIVISION

The process for dividing one binary number (the dividend) by another (the divisor)
is the same as that which is followed for decimal numbers, that which we usually re-
fer to as “long division.” The actual process is simpler in binary because when we
are checking to see how many times the divisor “goes into” the dividend, there are
only two possibilities, 0 or 1. To illustrate, consider the following simple division
examples:
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0011 0010.1
11/1001 100/1010.0
011 100
0011 100
1 100

0 0

In the first example, we have 1001, divided by 11,, which is equivalent to 9 + 3 in
decimal. The resulting quotient is 0011, = 3,,. In the second example, 1010, is di-
vided by 100,, or 10 + 4 in decimal. The result is 0010.1, = 2.5;,.

In most modern digital machines the subtractions that are part of the division
operation are usually carried out using 2’s-complement subtraction, that is, taking
the 2’s complement of the subtrahend and then adding.

The division of signed numbers is handled in the same way as multiplication.
Negative numbers are made positive by complementing, and the division is then
carried out. If the dividend and the divisor are of opposite sign, the resulting quo-
tient is changed to a negative number by taking its 2’s-complement and is given a
sign bit of 1. If the dividend and the divisor are of the same sign, the quotient is left
as a positive number and is given a sign bit of 0.

0-7 BCD ADDITION

In Chapter 2 we stated that many computers and calculators use the BCD code to
represent decimal numbers. Recall that this code takes each decimal digit and rep-
resents it by a four-bit code ranging from 0000 to 1001. The addition of decimal
numbers that are in BCD form can be best understood by considering the two cases
that can occur when two decimal digits are added.

Sum Equals 9 or Less
Consider adding 5 and 4 using BCD to represent each digit:

5 0101 « BCD for 5
+4  + 0100 <« BCD for 4
9 1001 « BCD for 9

The addition is carried out as in normal binary addition, and the sum is 1001, which
is the BCD code for 9. As another example, take 45 added to 33:

45 0100 0101 <« BCD for 45
+33 + 0011 0011 « BCD for 33
78 0111 1000 « BCD for 78

In this example the four-bit codes for 5 and 3 are added in binary to produce
1000, which is BCD for 8. Similarly, adding the second-decimal-digit positions
produces 0111, which is BCD for 7. The total is 01111000, which is the BCD code
for 78.

In the examples above, none of the sums of the pairs of decimal digits ex-
ceeded 9; therefore, no decimal carries were produced. For these cases the BCD ad-
dition process is straightforward and is actually the same as binary addition.
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Sum Greater Than 9
Consider the addition of 6 and 7 in BCD:

6 0110 « BCD for6
+7 + 0111 « BCD for 7

+13 1101 - invalid code group for BCD

The sum 1101 does not exist in the BCD code; it is one of the six forbidden or in-
valid four-bit code groups. This has occurred because the sum of the two digits ex-
ceeds 9. Whenever this occurs, the sum must be corrected by the addition of six
(0110) to take into account the skipping of the six invalid code groups:

0110 <« BCD for 6
+ 0111 « BCD for 7
1101 ¢« invalid sum
0110 <« add 6 for correction

0001 0011 « BCD for 13
—— —

1 3

As shown above, 0110 is added to the invalid sum and produces the correct BCD
result. Note that with the addition of 0110, a carry is produced into the second dec-
imal position. This addition must be performed whenever the sum of the two deci-
mal digits is greater than 9.

As another example, take 47 plus 35 in BCD:

47 0100 0111 « BCD for 47
+35 + 0011 0101 « BCD for 35

82 0111 1100 ¢ invalid sum in first digit
1<:_‘ 0110 <« add 6 to correct
1000 0010 <« correct BCD sum
e N
8 2

The addition of the four-bit codes for the 7 and 5 digits results in an invalid sum and
is corrected by adding 0110. Note that this generates a carry of 1, which is carried
over to be added to the BCD sum of the second-position digits.

Consider the addition of 59 and 38 in BCD:

1
59 0101
+38 + 0011

97 1001

1001 <« BCD for 59
1000 <« BCD for 38
0001 « perform addition
0110 ¢ add 6 to correct

1001 0111 BCD for 97
N—— kw__a’

9 7

Here, the addition of the least significant digits (LSDs) produces a sum of 17 =
10001. This generates a carry into the next digit position to be added to the codes
for 5 and 3. Since 17 > 9, a correction factor of 6 must be added to the LSD sum.


Albustani
Rechteck



Section 6-8 / Hexadecimal Arithmetic e 279

Addition of this correction does not generate a carry; the carry was already gener-
ated in the original addition.
To summarize the BCD addition procedure:

1. Using ordinary binary addition, add the BCD code groups for each digit position.

2. For those positions where the sum is 9 or less, no correction is needed. The sum
is in proper BCD form.

3. When the sum of two digits is greater than 9, a correction of 0110 should be
added to that sum to get the proper BCD result. This case always produces a
carry into the next digit position, either from the original addition (step 1) or
from the correction addition.

The procedure for BCD addition is clearly more complicated than straight binary
addition. This is also true of the other BCD arithmetic operations. Readers should
perform the addition of 275 + 641. Then check the correct procedure below.

275 0010 0111 0101 « BCD for 275
+641  + 0110 0100 0001 « BCD for 641
916 1000 1011 0110 ¢ perform addition
+ 0110 « add 6 to correct second digit

1001 0001 0110 « BCD for 916

BCD Subtraction

The process of subtracting BCD numbers is more difficult than addition. It involves
a complement-then-add procedure similar to the 2’s-complement method. We do
not cover it in this book.

Review Queslions 1. How can you tell when a correction is needed in BCD addition?

’ 2. Represent 135;, and 265, in BCD and then perform BCD addition. Check
your work by converting the result back to decimal.

6-8 HEXADECIMAL ARITHMETIC

Hex numbers are used extensively in machine-language computer programming
and in conjunction with computer memories (i.e., addresses). When working in
these areas, you will encounter situations where hex numbers must be added or
subtracted.

Hex Addition

Addition of hexadecimal numbers is done in much the same way as decimal addi-
tion as long as you remember that the largest hex digit is F instead of 9. The fol-
lowing procedure is suggested:

1. Add the two hex digits in decimal, mentally inserting the decimal equivalent for
those digits larger than 9.
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2. If the sum is 15 or less, it can be directly expressed as a hex digit.

3. If the sum is greater than or equal to 16, subtract 16 and carry a 1 to the next digit
position.

The following examples will illustrate the procedure.

EXAMPLE
6-6

Add the hex numbers 58 and 24.

Solution
58
+24
7C

Adding the LSDs (8 and 4) produces 12, which is C in hex. There is no carry into
the next digit position. Adding 5 and 2 produces 7.

ENAMPLE
6-7

Add the hex numbers 58 and 4B.

Solution
58
+4B
A3

Start by adding 8 and B, mentally substituting decimal 11 for B. This produces a
sum of 19. Since 19 is greater than 16, subtract 16 to get 3; write down the 3 and
carry a 1 into the next position. This carry is added to the 5 and 4 to produce a
sum of 10;,, which is then converted to hexadecimal A.

EXAMPLE

6-8

Add 3AF to 23C.

Solution
3AF
+23C
S5EB

The sum of F and C is considered as 15 + 12 = 27,,. Since this is greater than 16,
subtract 16 to get 11,5, which is hexadecimal B, and carry a 1 into the second
position. Add this carry to A and 3 to obtain E. There is no carry into the MSD
position.

Hex Subtraction

Remember that hex numbers are just an efficient way to represent binary numbers.
Thus, we can subtract hex numbers using the same method we used for binary
numbers. The 2's complement of the hex subtrahend will be taken and then added
to the minuend, and any carry out of the MSD position will be disregarded.
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How do we find the 2’s complement of a hex number? One way is to convert it
to binary, take the 2’'s complement of the binary equivalent, and then convert it
back to hex. This process is illustrated below.

73A « hex number
0111 0011 1010 « convert to binary
1000 1100 0110 « take 2's complement
8C6 « convert back to hex

There is a quicker procedure: subtract each hex digit from F; then add 1. Let’s try
this for the same hex number from the example above.

F F F
-7 =3 —A } « subtract each digit from F
8 C 5
+1 «—add 1
8 C 6 « hex equivalent of 2’s complement

Try either of the procedures above on the hex number E63. The correct result
for the 2’s complement is 19D.

Subtract 3A5,4 from 592.
Solution

First, convert the subtrahend (3A5) to its 2’s-complement form by using either
method presented above. The result is C5B. Then add this to the minuend (592):

592

+ CsB

11ED
— Disregard carry.

Ignoring the carry out of the MSD addition, the result is 1ED. We can prove that
this is correct by adding 1ED to 3A5 and checking to see that it equals 592 .

Hex Representation of Signed Numbers

The data stored in a microcomputer’s internal working memory or on a hard disk or
CD ROM are typically stored in bytes (groups of eight bits). The data byte stored in
a particular memory location is often expressed in hexadecimal because it is more
efficient and less error-prone than expressing it in binary. When the data consist of
signed numbers, it is helpful to be able to recognize whether a hex value represents
a positive or a negative number. For example, Table 6-2 lists the data stored in a
small segment of memory starting at address 4000.

Each memory location stores a single byte (eight bits), which is the binary
equivalent of a signed decimal number. The table also shows the hex equivalent of



282

Review Questions

Chapter 6 / Digital Arithmetic: Operations and Circuits

TABLE 6-2
Hex Address Stored Binary Data Hex Value Decimal Value
4000 00111010 3A +58
4001 11100101 E5 =29
4002 01010111 57 +87
4003 10000000 80 —128

each byte. For a negative data value, the sign bit (MSB) of the binary number will
be a 1; this will always make the MSD of the hex number 8 or greater. When the
data value is positive, the sign bit will be a 0, and the MSD of the hex number will
be 7 or less. The same holds true no matter how many digits are in the hex number.
When the MSD is 8 or greater, the number being represented is negative; when the
MSD is 7 or less, the number is positive.

1. Add 67F + 2A4.
2. Subtract 67F — 2A4.

3. Which of the following hex numbers represent positive values: 2F, 77EC,
C000, 6D, FFFF?

0-9 ARITHMETIC CIRCUITS

One essential function of most computers and calculators is the performance of
arithmetic operations. These operations are all performed in the arithmetic/logic
unit of a computer, where logic gates and flip-flops are combined so that they can
add, subtract, multiply, and divide binary numbers. These circuits perform arith-
metic operations at speeds that are not humanly possible. Typically, an addition op-
eration will take less than 100 ns.

We will now study some of the basic arithmetic circuits that are used to perform
the arithmetic operations discussed earlier. In some cases we will go through the ac-
tual design process, even though the circuits may be commercially available in inte-
grated-circuit form, to provide more practice in the use of the techniques learned in
Chapter 4.

Arithmetic/Logic Unit

All arithmetic operations take place in the arithmetic/logic unit (ALU) of a com-
puter. Figure 6-3 is a block diagram showing the major elements included in a typi-
cal ALU. The main purpose of the ALU is to accept binary data that are stored in the
memory and to execute arithmetic and logic operations on these data according to
instructions from the control unit.

The arithmetic/logic unit contains at least two flip-flop registers: the B register
and the accumulator register. It also contains combinational logic, which per-
forms the arithmetic and logic operations on the binary numbers that are stored in
the B register and the accumulator. A typical sequence of operations may occur as
follows:
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1. The control unit receives an instruction (from the memory unit) specifying that a
number stored in a particular memory location (address) is to be added to the
= number presently stored in the accumulator register.

2. The number to be added is transferred from memory to the B register.

3. The number in the B register and the number in the accumulator register are
added together in the logic circuits (upon command from the control unit). The
resulting sum is then sent to the accumulator to be stored.

4. The new number in the accumulator can remain there so that another number
can be added to it, or, if the particular arithmetic process is finished, it can be
transferred to memory for storage.

These steps should make it apparent how the accumulator register derives its
name. This register “accumulates” the sums that occur when performing successive
additions between new numbers acquired from memory and the previously accu-
mulated sum. In fact, for any arithmetic problem containing several steps, the accu-
mulator usually contains the results of the intermediate steps as they are completed
as well as the final result when the problem is finished.

6-10 PARALLEL BINARY ADDER

Computers and calculators perform the addition operation on two binary numbers
at a time, where each binary number can have several binary digits. Figure 6-4 il-
lustrates the addition of two five-bit numbers. The augend is stored in the accumu-
lator register; that is, the accumulator contains five FFs, storing the values 10101 in
successive FFs. Similarly, the addend, the number that is to be added to the au-
gend, is stored in the B register (in this case, 00111).

The addition process starts by adding the least significant bits (LSBs) of the au-
gend and addend. Thus, 1 + 1 = 10, which means that the sum for that position is
0, with a carryof 1.

This carry must be added to the next position along with the augend and ad-
dend bits in that position. Thus, in the second position, 1 + 0 + 1 = 10, which is
again a sum of 0 and a carry of 1. This carry is added to the next position together
with the augend and addend bits in that position, and so on, for the remaining po-
sitions, as shown in Figure 6-4.
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FIGURE 64 Typical binary Stored in
addition process. Augend —> 1 0 1 0 1 |<«—— accumulator
register
Addend —> 0 0 1 1 1 |<—— Stored in B register
+
Sum ——>» 1 1 1 aitan
Carry — 0 0 1 | 1
{To be added
to next
position.)

At each step in this addition process we are performing the addition of three
bits: the augend bit, the addend bit, and a carry bit from the previous position. The
result of the addition of these three bits produces two bits: a sum bit, and a carry
bit that is to be added to the next position. It should be clear that the same process
is followed for each bit position. Thus, if we can design a logic circuit that can du-
plicate this process, then all we have to do is to use the identical circuit for each of
the bit positions. This is illustrated in Figure 6-5.

In this diagram, variables A4, 4s, 4;, A1, and A, represent the bits of the augend
that are stored in the accumulator (which is also called the A register). Variables By,
B;, B,, By, and B, represent the bits of the addend stored in the B register. Variables
Gy, Gs, Gy, €y, and (G represent the carry bits into the corresponding positions. Vari-
ables S, S5, S, 81, S are the sum output bits for each position. Corresponding bits
of the augend and addend are fed to a logic circuit called a full adder, along with
a carry bit from the previous position. For example, bits A, and B are fed into full
adder 1 along with ¢;, which is the carry bit produced by the addition of the 4, and
B, bits. Bits 4, and B, are fed into full adder 0 along with (. Since 4y and B, are
the LSBs of the augend and addend, it appears that ¢; would always have to be 0,

B4 Bs B, B, By Addend bits
from B register
Cs Cy Cs ; C, G i Co
Full
FA FA FA FA adder
#4 #3 #2 #1 40
Sa S, S; $; So
Augend bits
Ay Ag A, Ay Ag from A register

Sum appears at Sy, S, S5, Sy, Sp outputs.

FIGURE 65 Block diagram of a five-bit parallel adder circuit using full adders.
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since there can be no carry into that position. However, we shall see that there will
be situations when ¢, can also be 1.

The full-adder circuit used in each position has three inputs: an A bit, a B bit,
and a Cbit. It also produces two outputs: a sum bit and a carry bit. For example, full
adder 0 has inputs A4y, B,, and C;, and it produces outputs & and C;. Full adder 1
had A;, B, and C as inputs and S, and C, as outputs, and so on. This arrangement
is repeated for as many positions as there are in the augend and addend. Although
this illustration is for five-bit numbers, in modern computers the numbers usually
range from 8 to 64 bits.

The arrangement in Figure 6-5 is called a parallel adder because all of the bits
of the augend and addend are present and are fed into the adder circuits simulta-
neously. This means that the additions in each position are taking place at the same
time. This is different from how we add on paper, taking each position one at a time
starting with the LSB. Clearly, parallel addition is extremely fast. More will be said
about this later.

1.. How many inputs does a full adder have? How many outputs?

2. Assume the following input levels in Figure 6-5: AsA4;4,4;,4, = 01001;
ByB;B,B,B, = 00111; G, = 0.
(@) What are the logic levels at the outputs of FA #2?
(b) What is the logic level at the Cs output?

6-11 DESIGN OF A FULL ADDER

full-adder circuit.

Now that we know the function of the full adder, we can proceed to design a logic
circuit that will perform this function. First, we must construct a truth table showing
the various input and output values for all possible cases. Figure 6-6 shows the truth
table having three inputs, A, B, and Cp, and two outputs, S and Coyr. There are
eight possible cases for the three inputs, and for each case the desired output val-
ues are listed. For example, consider the case A = 1, B= 0, and Gy = 1. The full
adder (hereafter abbreviated FA) must add these bits to produce a sum (S) of 0 and
a carry (Coup of 1. The reader should check the other cases to be sure they are un-
derstood.

FIGURE 6-6 Truth table fora  aygend| Addend | Carry Sum | Carry
bit bit bit bit bit
input input | input output| output
B
A B Cin S Cout
0 0 0 0 0 ¢
0 0 1 1 0
0 1 0 1 0 —>»S
0 1 1 0 1
1 0 0 1 0 Cin — > FA
1 0 1 0 1
1 1 0 0 1 - Cour
1 1 1 1 1

> =P
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Since there are two outputs, we will design the circuitry for each output indi-
vidually, starting with the S output. The truth table shows that there are four cases
where S is to be a 1. Using the sum-of-products method, we can write the expres-
sion for S as

S = ABGy + ABCyy + ABCiy + ABGy 6D

We can now try to simplify this expression by factoring. Unfortunately, none of the
terms in the expression has two variables in common with any of the other terms.
However, A can be factored from the first two terms, and A can be factored from the
last two terms:

S = A(BGy + BCp) + ABCpy + BGy)

The first term in parentheses should be recognized as the exclusive-OR combination
of B and (n, which can be written as B@ Cy. The second term in parentheses

- should be recognized as the exclusive-NOR of B and Gy, which can be written as

B @ Q. Thus, the expression for S becomes

S=AB® Gy + AB® Gn)

If we let X = B@ Gy, this can be written as

S=A-X+A-X=4A@X

which is simply the exclusive-OR of 4 and X. Replacing the expression for X, we
have

S=A@[BO® G 62

Consider now the output Coyr in the truth table of Figure 6-6. We can write the
sum-of-products expression for Coyr as follows:

Cour = ABGn + ABGn + ABCiy + ABGy

This expression can be simplified by factoring. We will employ the trick introduced
in Chapter 4, whereby we will use the ABGy term three times since it has common
factors with each of the other terms. Hence,

Cour = BGN(A + A + AGN(B + B) + AB(Ciy + GY) 63
BCn + AGN + AB

This expression cannot be simplified further.

Expressions (6-2) and (6-3) can be implemented as shown in Figure 6-7. Several
other implementations can be used to produce the same expressions for § and
Cour, none of which has any particular advantage over those shown. The complete
circuit with inputs A4, B, and Gy and outputs S and Coyr represents the full adder.
Each of the FAs in Figure 6-5 contains this same circuitry (or its equivalent).
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K-Map Simplification
We simplified the expressions for §and Coyr using algebraic methods. The K-map
method can also be used. Figure 6-8(a) shows the K map for the S output. This map
has no adjacent 1s, and so there are no pairs or quads to loop. Thus, the expression
for S cannot be simplified using the K map. This points out a limitation of the K-map
method as compared with the algebraic method. We were able to simplify the ex-
pression for S through factoring and the use of XOR and XNOR operations.

The K map for the Coyr output is shown in Figure 6-8(b). The three pairs that
are looped will produce the same expression obtained from the algebraic method.

FIGURE 6-8 K mappings for the Chn  Cn Cn  Cn

full-adder outputs.

ABO@ AB(13]
A§®O A§Oj

K map for S K map for Coyt

S= KECIN + KBE]N + ABC'N + AEEW COUT = BC]N + AC|N + AB
(a) (b)
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Half Adder

The FA operates on three inputs to produce a sum and carry output. In some cases
a circuit is needed that will add only two input bits, to produce a sum and carry out-
put. An example would be the addition of the LSB position of two binary numbers
where there is no carry input to be added. A special logic circuit can be designed to
take two input bits, A and B, and to produce sum (S) and carry (Coyp) outputs. This
circuit is called a half adder (HA). Its operation is similar to that of a FA except that
it operates on only two bits. We shall leave the design of the HA as an exercise at
the end of the chapter.

6-12 COMPLETE PARALLEL ADDER WITH REGISTERS

In a computer, the numbers that are to be added are stored in FF registers. Figure
6-9 shows the diagram of a four-bit parallel adder including the storage registers.
The augend bits A; through 4, are stored in the accumulator (A4 register); the ad-
dend bits B; through B, are stored in the B register. Each of these registers is made

~ up of D flip-flops for easy transfer of data.

The contents of the A register (i.e., the binary number stored in Az through A,)
is added to the contents of the B register by the four FAs, and the sum is produced
at outputs S; through S,. C; is the carry out of the fourth FA, and it can be used as
the carry input to a fifth FA, or as an overflow bit to indicate that the sum exceeds
1111.

Note that the sum outputs are connected to the D inputs of the A register. This
will allow the sum to be parallel-transferred into the A register on the PGT (positive-
going transition) of the TRANSFER pulse. In this way, the sum can be stored in the
A register.

Also note that the D inputs of the B register are coming from the computer’s
memory, so that binary numbers from memory will be parallel-transferred into the
Bregister on the PGT of the LOAD pulse. In most computers there is also provision
for parallel-transferring binary numbers from memory into the accumulator (A4 reg-
ister). For simplicity, the circuitry necessary for performing this transfer is not shown
in this diagram; it will be addressed in an end-of-chapter exercise.

Finally, note that the A register outputs are available for transfer to other loca-
tions such as to another computer register or to the computer’s memory. This will
make the adder circuit available for a new set of numbers.

Register Notation

Before we go through the complete process of how this circuit adds two binary
numbers, it will be helpful to introduce some notation that makes it easy to describe
the contents of a register and data transfer operations.

Whenever we want to give the levels that are present at each FF in a register or
at each output of a group of outputs, we will use brackets as illustrated below:

4] = 1011

This is the same as saying that A; = 1, A, = 0, A4; = 1, A, = 1. In other words, think
of [A] as representing “the contents of register A.”

Whenever we want to indicate the transfer of data to or from a register, we will
use an arrow as illustrated below:
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FIGURE 69 (a) Complete four-bit parallel adder with registers; (b) signals used to add
binary numbers from memory and store their sum in the accumulator.
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[B] — (4]

This means that the contents of the B register have been transferred to the A regis-
ter. The old contents of the A register will be lost as a result of this operation, and
the B register will be unchanged.

Sequence of Operations

We will now describe the process by which the circuit of Figure 6-9 will add the bi-
nary numbers 1001 and 0101. Assume that ¢, = 0; that is, there is no carry into the
LSB position.

1. [A] = 0000. A CLEAR pulse is applied to the asynchronous inputs (CLR) of each
FF in register A. This occurs at time #.

2. [M] — [B]. This first binary number is transferred from memory (M) to the B reg-
ister. In this case, the binary number 1001 is loaded into register B on the PGT of
the LOAD pulse at 2.

3. [SI* = [A]. With [B] = 1001 and [A] = 0000, the full adders produce a sum of
1001; that is, [S] = 1001. These sum outputs are transferred into the A register on
the PGT of the TRANSFER pulse at . This makes [4] = 1001.

4. [M] — [B]. The second binary number, 0101, is transferred from memory into the
Bregister on the PGT of the second LOAD pulse at #. This makes [B] = 0101.

5. [S] = [A]. With [B] = 0101 and [A] = 1001, the FAs produce [S] = 1110. These
sum outputs are transferred into the A register when the second TRANSFER pulse
occurs at #5. Thus, [4] = 1110.

6. At this point, the sum of the two binary numbers is present in the accumulator.
In most computers the contents of the accumulator, [A], will usually be trans-
ferred to the computer’s memory so that the adder circuit can be used for a new
set of numbers. The circuitry that performs this [A] — [M] transfer is not shown in
Figure 6-9.

1. Suppose that four different four-bit numbers are to be taken from memory
and added by the circuit of Figure 6-9. How many CLEAR pulses will be
needed? How many TRANSFER pulses? How many LOAD pulses?

2. Determine the contents of the A register after the following sequence of oper-
ations: [4] = 0000, [0110] — [B], [S] — [4], [1110] — [B], [S] — [Al.

6-13 CARRY PROPAGATION

The parallel adder of Figure 6-9 performs additions at a relatively high speed, since
it adds the bits from each position simultaneously. However, its speed is limited by
an effect called carry propagation or carry ripple, which can best be explained
by considering the following addition:

* Fven though Sis not a register, we will use [S] to represent the group of S outputs.
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0111
+ 0001

1000

Addition of the LSB position produces a carry into the second position. This carry,
when added to the bits of the second position, produces a carry into the third posi-
tion. The latter carry, when added to the bits of the third position, produces a carry
into the last position. The key thing to notice in this example is that the sum bit gen-
erated in the last position (MSB) depended on the carry that was generated by the
addition in the first position (LSB).

Looking at this from the viewpoint of the circuit of Figure 6-9, S; out of the last
full adder depends on C; out of the first full adder. But the C; signal must pass
through three FAs before it produces §;. What this means is that the S output will
not reach its correct value until C; has propagated through the intermediate FAs.
This represents a time delay that depends on the propagation delay produced in a
FA. For example, if each FA has a propagation delay of 40 ns, then S will not reach
its correct level until 120 ns after C; is generated. This means that the add command
pulse cannot be applied until 160 ns after the augend and addend numbers are pre-
sent in the FF registers (the extra 40 ns is due to the delay of the LSB full adder,
which generates C)).

Obviously, the situation becomes much worse if we extend the adder cir-
cuitry to add a greater number of bits. If the adder were handling 32-bit num-
bers, the carry propagation delay could be 1280 ns = 1.28 ps. The add pulse
could not be applied until at least 1.28 us after the numbers were present in the
registers.

This magnitude of delay is prohibitive for high-speed computers. Fortunately,
logic designers have come up with several ingenious schemes for reducing this de-
lay. One of the schemes, called look-ahead carry, utilizes logic gates to look at the
lower-order bits of the augend and addend to see if a higher-order carry is to be
generated. For example, it is possible to build a logic circuit with B,, By, By, A,, A,
and A, as inputs and Cj as an output. This logic circuit would have a shorter delay
than is obtained by the carry propagation through the FAs. This scheme requires a
large amount of extra circuitry but is necessary to produce high-speed adders. The
extra circuitry is not a significant consideration with the present use of integrated
circuits. Many high-speed adders available in integrated-circuit form utilize the look-
ahead carry or a similar technique for reducing overall propagation delays.

6-14 INTEGRATED-CIRCUIT PARALLEL ADDER

Several parallel adders are available as ICs. The most common is a four-bit par-
allel adder IC that contains four interconnected FAs and the look-ahead carry cir-
cuitry needed for high-speed operation. The 7483A, 74LS83A, 74283, and 7415283
are all TTL four-bit parallel-adder chips. The 283s are identical to the 83s except that
they have V. and ground on pins 16 and 8, respectively; it has become standard on
all new chips to have the power and ground pins at the corners of the chip. The
74HC283 is the high-speed CMOS version of the same four-bit parallel adder.
Figure 6-10(a) shows the functional symbol for the 74HC283 four-bit parallel
adder (and its equivalents). The inputs to this IC are two four-bit numbers,
AsA,A1 Ay and BB, B By, and the carry, ¢, into the LSB position. The outputs are
the sum bits and the carry, C;, out of the MSB position. The sum bits are labeled




292 @ Chapter 6 / Digital Arithmetic: Operations and Circuits

FIGURE 6-10 (a) Block symbol : Ag A, A A,
for the 74HC283 four-bit parallel
adder; (b) cascading two
74HC283s.
4-bit
Cye—— parallel adder — C,
74HC283
B3 By By By
233, 31 %

(a)

8-bit augend
AL

r N
A; Ag Ag Ay Ag Ay A, A
74HC283 G 74HC283

Cgt—

(high-order adder, S (low-order adder)

tEEE 1t

B; Bg Bs B B3;B, B; B
7 Pe Bs B4 352 B1 Bo,

g
8-bit addend

YYVYY l*

27 23 25 24 23 22 21 Zo
“ _J
—

(b)

332,313, where 3, is the Greek capital letter sigma. The %, label is just a common
alternative to the S label for a sum bit.

Cascading Parallel Adders

Two or more IC adders can be connected together (cascaded) to accomplish the ad-
dition of larger binary numbers. Figure 6-10(b) shows two 74HC283 adders con-
nected to add two 8-bit numbers 4; Ag As A; A3 A, Ay Ay and B, Bs Bs B; B; B, B, B,.
The adder on the right adds the lower-order bits of the numbers. The adder on the
left adds the higher-order bits plus the Cj carry out of the lower-order adder. The
eight sum outputs are the resultant sum of the two 8-bit numbers. Cg is the carry out
of the MSB position. It can be used as the carry input to a third adder stage if larger
binary numbers are to be added.
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The look-ahead carry feature of the 74HC283 speeds up the operation of this
two-stage adder because the logic level at Cj, the carry out of the lower-order stage,
is generated more rapidly than it would be if there were no look-ahead carry cir-
cuitry on the 74HC283 chip. This allows the higher-order stage to produce its sum
outputs more quickly.

Determine the logic levels at the inputs and outputs of the eight-bit adder in
Figure 6-10(b) when 72, is added to 137,,,.

Solution
First convert each number to an eight-bit binary number:

137 = 10001001
72 = 01001000

I

These two binary values will be applied to the A and B inputs; that is, the A4 inputs
will be 10001001 from left to right, and the B inputs will be 01001000 from left to
right. The adder will produce the binary sum of the two numbers:

[4] = 10001001
(B = 01001000

3] = 11010001

The sum outputs will read 11010001 from left to right. There is no overflow into
the Gy bit, and so it will be a 0.

1. Howrmany 74HC283 chips are needed to add two 20-bit numbers?

2. If a 74HC283 has a maximum propagation delay of 30 ns from G, to C, what
will be the total propagation delay of a 32-bit adder constructed from
74HC283s?

3. What will be the logic level at C; in Example 6-10?

Review Ouesuom

6-15 2’s-COMPLEMENT SYSTEM

Most modern computers use the 2’s-complement system to represent negative num-
bers and to perform subtraction. The operations of addition and subtraction of
signed numbers can be performed using only the addition operation if we use the
2’s-complement form to represent negative numbers.

Addition

Positive and negative numbers, including the sign bits, can be added together in the
basic parallel-adder circuit when the negative numbers are in 2’s-complement form.
This is illustrated in Figure 6-11 for the addition of —3 and +6. The —3 is repre-
sented in its 2’s-complement form as 1101, where the first 1 is the sign bit; the +6 is
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From A register

2's-complement Az Ay Ay Ag
representation of -3 (augend)
EERRSRET [ o bRk )
‘l 1] 01
1 4-bit 0
-~ parallel adder €——— C,
Cy 7415283
+6 o1 ol ol ! 3522 20 |2
(addend) x___o _1 J O_J S el
DRSS ~— +3
B; B, B, By L __0_ P_ J“ J %ai (resultant sum)

From B register

FIGURE 6-11 Parallel adder used to add + and — numbers in 2’s-complement system.

represented as 0110, with the first zero as the sign bit. These numbers are stored in
their corresponding registers. The four-bit parallel adder produces sum outputs of
0011, which represents +3. The Cj; output is 1, but remember that it is disregarded
in the 2’s-complement method.

Subtraction

When the 2’s-complement system is used, the number to be subtracted (the subtra-
hend) is changed to its 2’s complement and then added to the minuend (the num-
ber the subtrahend is being subtracted from). For example, we can assume that the
minuend is already stored in the accumulator (4 register). The subtrahend is then
placed in the B register (in a computer it would be transferred here from memory)
and is changed to its 2’s-complement form before it is added to the number in the
A register. The sum outputs of the adder circuit now represent the difference be-
tween the minuend and the subtrahend.

The parallel-adder circuit that we have been discussing can be adapted to per-
form the subtraction described above if we provide a means for taking the 2’s com-
plement of the B register number. The 2’s complement of a binary number is ob-
tained by complementing (inverting) each bit and then adding 1 to the LSB. Figure
6-12 shows how this can be accomplished. The inverted outputs of the B register
are used rather than the normal outputs; that is, By, B;, B,, and B are fed to the
adder inputs (remember, B; is the sign bit). This takes care of complementing each
bit of the B number. Also, , is made a logical 1, so that it adds an extra 1 into the
LSB of the adder; this accomplishes the same effect as adding 1 to the LSB of the B
register for forming the 2’s complement.

The outputs 33 to 3, represent the results of the subtraction operation. Of
course, 23 is the sign bit of the result and indicates whether the result is + or —.
The carry output Cj is again disregarded.
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FIGURE 6-12 Parallel adder used
to perform subtraction (4 — B)
using the 2’s-complement system.
The bits of the subtrahend (B)
are inverted, and ¢y = 1 to
produce the 2’s complement.

Az Ay Ay Ao From A register

223

4-bit
Cs parallel adder ~—— Cy= 1
(disregard) 7415283

o 1111

outputs of { B B, B; EO
B register . %, 3, Zo} Represen;s S)I:;FERENCE
¥]

To help clarify this operation, study the following steps for subtracting +6 from
+4:

+4 is stored in the A register as 0100.
+6 is stored in the B register as 0110.
The inverted outputs of the B-register FFs (1001) are fed to the adder.

. The parallel-adder circuitry adds [4] = 0100 to [B] = 1001 along with a carry,
Gy = 1, into the LSB. The operation is shown below.

BN

1 « G
0100 « [A]
+ 1001 « [B]

1110 « [2] = [4] - [B]

The result at the sum outputs is 1110. This actually represents the result of the
subtraction operation, the difference between the number in the A register and the
number in the B register, that is, [A] — [Bl. Since the sign bit = 1, it is a negative re-
sult and is in 2's-complement form. We can verify that 1110 represents —2;, by tak-
ing its 2’s-complement and obtaining +2;:

1110
0001
+ 1

0010 = +24,

Combined Addition and Subtraction

It should now be clear that the basic parallel-adder circuit can be used to perform
addition or subtraction depending on whether the B number is left unchanged or is
converted to its 2’s complement. A complete circuit that can perform both addition
and subtraction in the 2’s-complement system is shown in Figure 6-13.

This adder/subtractor circuit is controlled by the two control signals ADD and
SUB. When the ADD level is HIGH, the circuit performs addition of the numbers
stored in the A and B registers. When the SUB level is HIGH, the circuit subtracts the
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B register

By Bs B, B, B, B, By Bo

? ® ADD

T SUB
8 6 4 2
12 11 10 9

B, B, B, B, Co
Cot— 7415283 &
Az Ay Ay Ag
A ) A
Az Ay A Ay
CLK CLK CLK CLK
D_A N D A 1D A Y Y
A A A A
g 1 b | 35 %, I o
Transfer I
pulse -1

FIGURE 6-13 Parallel adder/subtractor using the 2’s-complement system.

Bregister number from the A-register number. The operation is described as fol-
lows:

. Assume that ADD = 1 and SUB = 0. The SUB = 0 disables (inhibits) AND gates
2, 4, 6, and 8, holding their outputs at 0. The ADD = 1 enables AND gates 1, 3,
5, and 7, allowing their outputs to pass the By, B, B,, and Bs levels, respectively.

. The levels B, to B pass through the OR gates into the four-bit parallel adder to
be added to the bits 4y to As. The sum appears at the outputs % to 2.

. Note that SUB = 0 causes a carry ¢, = 0 into the adder.

. Now assume that ADD = 0 and SUB = 1. The ADD = 0 inhibits AND gates 1, 3,
5, and 7._The_ SUB =1 eilables AND gates 2, 4, 6, and 8, so that their outputs
pass the By, B;, B;, and Bj levels, respectively.

. The levels B, to B pass through the OR gates into the adder to be added to the
bits Ay to As. Note also that G is now 1. Thus, the B-register number has essen-
tially been converted to its 2’s complement.
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6. The difference appears at the outputs 2, to 2.

Circuits like the adder/subtractor of Figure 6-13 are used in computers because
they provide a relatively simple means for adding and subtracting signed binary
numbers. In most computers the outputs present at the 3 output lines are usually
transferred into the A register (accumulator), so that the results of the addition or
subtraction always end up stored in the A4 register. This is accomplished by applying
a TRANSFER pulse to the CLK inputs of register A.

1. Why does G, have to be a 1 in order to use the adder circuit in Figure 6-12 as
a subtractor?

2. Assume that [4] = 0011 and [B] = 0010 in Figure 6-13. If ADD = 1 and SUB =
0, determine the logic levels at the OR gate outputs.
3. Repeat question 2 for ADD = 0, SUB = 1.

4. True or false: When the adder/subtractor circuit is used for subtraction, the 2’s
. complement of the subtrahend appears at the input of the adder.

6-16 BCD ADDER

The BCD addition process was discussed in Section 6-7 and is reviewed below:

1. Add the BCD code groups for each decimal digit position; use ordinary binary
addition.

2. For those positions where the sum is 9 or less, the sum is in proper BCD form
and no correction is needed.

3. When the sum of two digits is greater than 9, a correction of 0110 should be
added to that sum to produce the proper BCD result. This will produce a carry to
be added to the next decimal position.

A BCD adder circuit must be able to operate in accordance with the above
steps. In other words, the circuit must be able to do the following:

1. Add two four-bit BCD code groups, using straight binary addition.

2. Determine if the sum of this addition is greater than 1001 (decimal 9); if it is, add
0110 (6) to this sum and generate a carry to the next decimal position.

The first requirement is easily met by using a four-bit binary parallel adder such
as the 74HC283 and its equivalents. For example, if the two BCD code groups rep-
resented by A3A,A14, and BB, By By, respectively, are applied to a four-bit parallel
adder, the adder will perform the following operation:

A3A,A1Ay < BCD code group
+ B3;B,B B, <« BCD code group
848535,8,8 & straight binary sum

Sy is actually Cj, the carry out of the MSB.
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The sum outputs §;535,515 can range anywhere from 00000 to 10010 (when
both BCD code groups are 1001 = 9). The circuitry for a BCD adder must include
the logic needed to detect whenever the sum is greater than 01001, so that the cor-
rection can be added in. These cases where the sum is greater than 01001 are listed
in Table 6-3. Let’s define X as a logic output that will go HIGH only when the sum
is greater than 01001 (i.e., for the cases listed in Table 6-3). If we examine these
cases, it can be reasoned that X will be HIGH for either of the following conditions:

1. Whenever S; = 1 (sums greater than 15)
2. Whenever S3 = 1 and either S, or S; or both are 1 (sums 10 to 15)

This can be expressed as
X=8+ 8+ S

Whenever X = 1, it is necessary to add the correction 0110 to the sum bits and to
generate a carry. Figure 6-14 shows the complete circuitry for a BCD adder, includ-
ing the logic-circuit implementation for X.

The circuit consists of three basic parts. The two code groups A3;A,A;4, and
B3;B,B; B, are added together in the upper four-bit adder to produce the sum
84535,515%. The logic gates implement the expression for X. The lower four-bit adder
will add the correction 0110 to the sum bits only when X = 1, producing the final
BCD sum output represented by 333,,3,3,. X is also the carry output that is pro-
duced when the sum is greater than 01001. Of course, when X = 0, there is no carry
and no addition of 0110. In such cases, 333,33 = 55,5 %.

To help in the understanding of the BCD adder, the reader should try several
cases by following them through the circuit. The following cases would be particu-
larly instructive:

Inputs
(@ 41 = 0101, {B = 0011, ¢, = O
() [Al = 0111, [Bl = 0110, G, =0

TABLE 63
4 5; 52 $1 So
0 1 o 1 0 Qo
0 1 0 1 1 an
0 1 1 0 0 12
0 1 1 0 1 13
0 1 1 1 0 (49
0 1 11 1 as
1 0 0o o0 0 (6
1 o o o0 1 an
1 0o o0 1 0 (®
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B; By By

i

BCD code
group

Cy 4-bit Co. carry from
parallel adder (74HC283) ; Ioweard%%srltlon
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F
¢
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FIGURE 6-14 A BCD adder contains two four-bit adders and a correction-detector circuit.

Outputs
(@ [S]= 01000, X = 0, [3] = 1000, CARRY = 0
@®) [S1 = 01101, X = 1, [3] = 0011, CARRY =1

Cascading BCD Adders

The circuit of Figure 6-14 is used for adding two decimal digits that have been en-
coded in BCD code. When decimal numbers with several digits are to be added to-
gether, it is necessary to use a separate BCD adder for each digit position. Figure 6-15
is a block diagram of a circuit for the addition of two three-digit decimal numbers.
The A register contains 12 bits, which are the three BCD code groups for one of
the three-digit decimal numbers; similarly, the B register contains the BCD repre-
sentation of the other three-digit decimal number. The code groups As;—4, and
B;—B, representing the least significant digits are fed to the first BCD adder. Each
BCD adder block is assumed to contain the circuitry of Figure 6-14. This first BCD
adder produces sum outputs 3,33,,3,,3,, which is the BCD code for the least signifi-
cant digit of the sum. It also produces a carry output that is sent to the second BCD
adder, which is adding 4, through A4, and B, through By, the BCD code groups for
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the second-decimal-digit position. The second BCD adder produces 2-%¢3s24, the
BCD code for the second digit of the sum, and so on. This arrangement can, of
course, be extended to decimal numbers of any size by simply adding more FFs to
the registers and including a BCD adder for each digit position.
Determine the inputs and outputs when the circuit of Figure 6-15 is used to add
538, t0 247,,. Assume CARRY IN = 0.
Solution
First, the decimal numbers are represented in BCD.
247 = 0010 0100 0111 (BCD)
538 = 0101 0011 1000 (BCD)
These BCD numbers will be placed in the 4 and B registers, respectively, so that
(41 = 0010 0100 0111
[Bl = 0101 0011 1000
The CARRY IN to the LSD adder will be a 0.
Once the data are in the registers, the BCD adders will begin to produce the
correct BCD sums at their outputs. The LSD adder will add the 0111 (7) and 1000
(8) to produce a sum of 0101 (5) and a CARRY of 1 into the middle adder. The
middle adder will add the 0100 (4) and 0011 (3) and the CARRY of 1 to produce a
BCD codes for 3-digit number
A
r MSD LSD A
Ar Ao | Ao | Ag Az | Rs | As | Aq Ay | Ar | A Ao
Y Yy Y Y Y Y Y Y Y Y Y Y
CARRY CARRY CARRY CARRY IN
c BCD b BCD s BCD
adder - adder - adder ¢
¢£££AA& A i{&{l“\ A ii{&u A
211 10«9 <8 7 “B <5 ~4 3 «2 «1 ~0
Bi1 | Bio| Bo | Bs B; | B | Bs | Ba B3 | By | By Bo
L - J

BCD codes for 3-digit number

FIGURE 6-15 Cascading BCD adders to add two three-digit decimal numbers.
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sum of 1000 (8) and a CARRY of 0 into the MSD adder. The MSD adder will add
0010 (2) and 0101 (5) for a sum of 0111 (7) and no CARRY OUT. Thus, at the sum
outputs we have

(3] = 0111 1000 0101

and there is a CARRY output of 0 from the MSD adder. This result is, of course, the
BCD representation of the decimal sum 785,

Review Questions 1. What are the three basic parts of a BCD adder circuit?

2. Describe how the BCD adder circuit detects the need for a correction and ex-
ecutes it.

6-17 ALU INTEGRATED CIRCUITS

There are several integrated circuits available that are called arithmetic/logic units
(ALUs) even though they do not have the full capabilities of a computer’s arith-
metic/logic unit. These ALU chips are capable of performing several different
arithmetic and logic operations on binary data inputs. The specific operation that an
ALU IC is to perform is determined by a specific binary code applied to its function-
select inputs. Some of the ALU ICs are fairly complex, and it would require a great
amount of time and space to explain and illustrate their operation. In this section we
will use a relatively simple, yet useful, ALU chip to show the basic concepts behind all
ALU chips. The ideas presented here can then be extended to the more complex de-
vices.

The 74LS382/HC382 ALU

Figure 6-16(a) shows the block symbol for an ALU that is available as a 74LS382
(TTL) and as a 74HC382 (CMOS). This 20-pin IC operates on two four-bit input
numbers, As4,A4:4, and B;B,B, By, to produce a four-bit output result K FF F,. This
ALU can perform eight different operations. At any given time, the operation that it
is performing depends on the input code applied to the function-select inputs
$,5.%. The table in Figure 6-16(b) shows the eight available operations. We will
now describe each of these operations.

CLEAR OPERATION With $,8,.5 = 000, the ALU will clear all of the bits of the F
output so that F5FF Fy, = 0000.

ADD OPERATION With S5, = 011, the ALU will add 434,44, to B;B,B,B, to
produce their sum at F3FF F,. For this operation, Cy is the carry into the LSB posi-
tion, and it must be made a 0. Cy.4 is the carry output from the MSB position. OVR
is the overflow indicator output; it detects overflow when signed numbers are being
used. OVR will be a 1 when an add or a subtract operation produces a result that is
too large to fit into four bits (including the sign bit).
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|
nputs Function Table
Ay &— S, Sy So || Operation | | Comments
A 2 Outputs i R
Ay &— P 0 0 0 ||CLEAR FoFoF1Fo = 0000
Ao @ —®F; 0 0 1 B minus A }N ds Cu = 1
——eF, 0 1 0 A minus B ee N~
B; @&— oF o 1 1 Aplus B Needs Cy = 0
B, &— 7415382/ F‘ 1.0 0 A®B Exclusive-OR
BB, e——  74HC382 ®Fo 10 1 ||A+B OR
B, &— 1 1 0 AB AND
11 PRESET FoFoF;Fo = 1111
Cn &— ———0 Cg
Notes: S inputs select operation.
OVR = 1 for signed-number overflow.
S2 & (b)
S{s ® —® OVR
So &—
ALU
A = 4-bit input number F = 4-bit output number
B = 4-bit input number Cun+4 = carry out of MSB position
Cy = carry into LSB position OVR:= overflow indicator

S = 3-bit operation select inputs

(a)

FIGURE 6-16 (a) Block symbol for 74L3382/HC382 ALU chip; (b) function table showing
how select inputs (S) determine what operation is to be performed on 4 and B inputs.

SUBTRACT OPERATIONS With S,S5,5, = 001, the ALU will subtract the A input
number from the B input number. With 8,55, = 010, the ALU will subtract B from
A. In either case the difference appears at F;F, F, F,. Note that the subtract operations
require that the Cy input be a 1.

XOR OPERATION With S,5,5, = 100, the ALU will perform a bit-by-bit XOR oper-
ation on the A and B inputs. This is illustrated below for A34,A4;4, = 0110 and
B;B,B, B, = 1100.

A@®B=0P1=1=F
4L, DB =1@®1=0=F
A4A®B=100=1=F
AP B=0D0=0=FH

The result is FFF Fy = 1010.

OR OPERATION With $,8,8 = 101, the ALU will perform a bit-by-bit OR opera-
tion on the A and B inputs. For example, with A34,4,4, = 0110 and B3;B,B,By =
1100, the ALU will generate a result of KF,FF, = 1110.
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AND OPERATION With 5,88 = 110, the ALU will perform a bit-by-bit AND op-
eration on the 4 and B inputs. For example, with A34,4,A4, = 0110 and B;B,B, B, =
1100, the ALU will generate a result of BFF F, = 0100.

PRESET OPERATIONS With §,5,5, = 111, the ALU will set all of the bits of the
output so that HELF ) = 1111.

(a) Determine the 74HC382 outputs for the following inputs: $,5,5, = 010,
A3A2A1/10 = 0100, 33323130 = OOO]., and CN = 1.
(b) Change the select code to 011 and repeat.

Solution

(a) From the function table in Figure 6-16(b), 010 selects the (A4 — B) operation.
The ALU will perform the 2’s-complement subtraction by complementing B and
adding it to 4 and Cy. Note that Cy = 1 is needed to complete the 2’s comple-
ment of B effectively.

1 « Cy

0100 « A

+ 1110 « B
10011

Cws 3 - BERF

As always in 2’s-complement subtraction, the CARRY OUT of the MSB is dis-
carded. The correct result of the (4 — B) operation appears at the F outputs.

The OVR output is determined by considering the input numbers to be
signed numbers. Thus, we have A3;4,4,4, = 0100 = +4,, and B;B,B,B, =
0001 = +14,. The result of the subtract operation is FF,FF, = 0011 = +34,
which is correct. Therefore, no overflow has occurred, and OVR = 0. If the re-
sult had been negative, it would have been in 2’s-complement form.

(b) A select code of 011 will produce the sum of the A and B inputs. However,
since Cy = 1, there will be a carry of 1 added into the LSB position. This will
produce a result of FF,F Fy = 0110, which is 1 greater than (4 + B). The Cyy4
and OVR outputs will both be 0. For the correct sum to appear at F, the Cy in-
put must be at 0.

Expanding the ALU

A single 7418382 or 74HC382 operates on four-bit numbers. Two or more of
these chips can be connected together to operate on larger numbers. Figure
6-17 shows how two four-bit ALUs can be combined to add two eight-bit
numbers, B;BsBsB;B;B,B\ By and A;AsAsA,A3A,A1 Ay, to produce the output sum
3,363524232,%1 2. Study the circuit diagram and note the following points:

1. Chip Z1 operates on the four lower-order bits of the two input numbers. Chip Z2
operates on the four higher-order bits.
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2. The sum appears at the F outputs of Z1 and Z2. The lower-order bits appear at
Z1, and the higher-order bits at Z2.

3. The Cyinput of Z1 is the carry into the LSB position. For addition, it is made a 0.

4. The carry output [Cy+4] of Z1 is connected to the carry input [Cy] of Z2.

5. The OVR output of Z2 is the overflow indicator when signed eight-bit numbers
are being used.

6. The corresponding select inputs of the two chips are connected together so that
Z1 and Z2 are always performing the same operation. For addition, the select in-
puts are shown as 011.

How would the arrangement of Figure 6-17 have to be changed in order to
perform the subtraction (B — A)?

B, Bg Bs By B, B, By By
® [ N ] ® 0
Ay Ag Ag Ay Az Ay Ay Ay
7 ® 0O ® ¢ 00
1 @ $- 0
1@ @
0@ T» I
S281 Sy Cn B3zBzByBy Az A AjAg S; 51 S0 Cn B3ByByBy AgAy Ay A
74HC382 74HC382
Cusa OVR F3 F, Fy Fo [22 Cusa OVR  Fy Fyp Fy Fo [21

27 25 25 24 23 22 21 20

Notes: Z1 adds lower-order bits.
Z2 adds higher-order bits.
27’—20 = 8-bit sum.
OVR of Z2 is 8-bit overflow indicator.

FIGURE 6-17 Two 74HC382 ALU chips connected as an eight-bit adder.

Solution

The select input code [see table in Figure 6-16(b)] must be changed to 001, and
the Cy input of Z1 must be made a 1.
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Other ALUs

The 74LS181/HC181 is another four-bit ALU. It has four select inputs which can se-
lect any of 16 different operations. It also has a mode input bit that can switch be-
tween logic operations and arithmetic operations (add and subtract). This ALU has
an A = B output that is used to compare the magnitudes of the 4 and B inputs.
When the two input numbers are exactly equal, the A = B output will be a 1; oth-
erwise, it is a 0.

The 741.S881/HC881 is similar to the 181 chip, but it has the capability of per-
forming some additional logic operations.

1. Apply the following inputs to the ALU of Figure 6-16, and determine the out-
puts: 5,55 = 001, AsA,A, A, = 1110, B;B,B, B, = 1001, Cy = 1.

2. Change the select code to 011 and Cy to 0, and repeat question 1.

3. Change the select code to 110, and repeat question 1.

4.. Apply the following inputs to the circuit of Figure 6-17, and determine the
outputs: B = 01010011, A = 00011000.

5. Change the select code to 111, and repeat question 4.
6. How many 74HC382s are needed to add two 32-bit numbers?

6-18 IEEE/ANSI SYMBOLS

Figure 6-18(a) shows the IEEE/ANSI symbol for a one-bit adder (full adder). Note
that the symbol %, is used to indicate the addition operation. Figure 6-18(b) is the
IEEE/ANSI symbol for the 7483/74283 four-bit parallel adder. Note that the letters P
and Q are used to represent the two four-bit inputs, and %, is used for the four-bit
output sum. The P, Q, and 3 are specified by the IEEE/ANSI standard and must be

7483/74283
Z Ao.—- O z
A A, 0— b
—® Sum inputs | A, @— ol—ex,
A, 0—3 s —®% | sum
—e Xz, output
Bo®— 0 3—e 3,
Cl CO —@ Carry B B, @—
out . Q
inputs | B, @&—
B;@—3
(a)
Carry . ® Carry
in cl co out
(b)

FIGURE 6-18 IEEE/ANSI symbols for (a) a full adder and (b) a four-bit parallel adder IC

(7483/74283).
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used inside the symbol outline. The letters used for the inputs and outputs external
to the symbol outline are not specified by the standard.

6-19 TROUBLESHOOTING CASE STUDY

A technician is testing the adder/subtractor redrawn in Figure 6-19 and records the
following test results for the various operating modes:

B Mode 1: ADD = 0, SUB = 0. The sum outputs are always equal to the number in
the A register plus one. For example, when [4] = 0110, the sum is [3] = 0111.
This is incorrect, since the OR outputs and G, should all be 0 in this mode to pro-
duce [Z] = [4].

B Mode 2: Add = 1, SUB = 0. The sum is always 1 more than it should be. For ex-
ample, with [4] = 0010 and [B] = 0100, the sum output is 0111 instead of 0110.

B Mode 3: Add = 0, SUB = 1. The 3 outputs are always equal to [4] — [B], as ex-
pected.

When she examines these test results, the technician sees that the sum outputs
exceed the expected results by 1 for the first two modes of operation. At first she
suspects a possible fault in one of the LSB inputs to the adder, but she dismisses this
because such a fault would also affect the subtraction operation, which is working
correctly. Eventually, she realizes that there is another fault that could add an extra
1 to the results for the first two modes without causing an error in the subtraction

mode.
B; Bj B, B, B, B, By By
N T RN Y v VN
-
r f ? Y ADD
t7 5 3 1
T T SUB
8 6 4
B3 B, By
12 1 10
Co
7415283 u
Cy—— 4-bit parallel adder
A A, A Ag 03 I 3

FIGURE 6-19 Parallel adder/subtractor circuit.
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Recall that ¢, is made a 1 in the subtraction mode as part of the 2’s-complement
operation on [Bl. For the other modes, ¢, is to be a 0. The technician checks the
connection between the SUB signal and the G, input to the adder and finds that it is
open due to a bad solder connection. This open connection explains the observed
results, since the TTL adder responds as if ¢, were a constant logic 1, causing an ex-
tra 1 to be added to the result in modes 1 and 2. The open connection would have
no effect on mode 3, because ¢, is supposed to be a 1 anyway.

Consider again the adder/subtractor circuit. Suppose that there is a break in the
connection path between the SUB input and the AND gates at point X in Figure
6-19. Describe the effects of this open on the circuit operation for each mode.

Solution

First, realize that this fault will produce a logic 1 at the affected input of AND gates
2, 4, 6, and 8, which will permanently enable each of these gates to pass its B
input to the following OR gate as shown.

B Mode 1: ADD = 0, SUB = 0. The fault will cause the circuit to perform subtrac-
tion—almost. The 1's complement of [B] will reach the OR gate outputs and be
applied to the adder along with [4l. With G, = 0, the 2’s complement of [B] will
not be complete; it will be short by 1. Thus, the adder will produce [4] — [Bl — 1.
To illustrate, let’s try [4] = +6 = 0110 and [Bl = +3 = 0011. The adder will add
as follows:

1’s complement of [Bl = 1100
[4] = 0110

result = 10010

Disregard carry.

The result is 0010 = +2 instead of 0011 = +3, as it would be for normal sub-
traction.

B Mode 2: ADD = 1, SUB = 0. With ADD = 1, AND gates 1, 3, 5, and 7 will pass
the Binputs to the following OR gate. Thus, each OR gate will have a B and a B
at its inputs, thereby producing a 1 output. For example, the inputs to OR gate 9
will be B, coming from AND gate 2 (because of the fault), and B, coming from
AND gate 1 (because ADD = 1). Thus, OR gate 9 will produce an output of B, +
B, which will always be a logic 1.

The adder will add the 1111 from the OR gates to the [4] to produce a sum

that is 1 less than [A]. Why? Because 1111, = —1;,.

B Mode 3: ADD = 0, SUB = 1. This mode will work correctly since SUB = 1 is sup-
posed to enable AND gates 2, 4, 6, and 8 anyway.

6-20 A PLD FULL ADDER

As you have seen in Figure 6-10, a 74HC283 can be used to implement a 4-bit full
adder. Can the same circuit be implemented using a PLD? The answer, of course, is
yes! Implementing this type of circuit allows us to explore the set notation of CUPL.
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In Section 6-12, we discussed register notation, which makes it easier to describe
the contents and combination of registers made up of more than one bit. Figure 6-
10(a) shows a 4-bit adder with augend [4], addend [B], and sum [X]. CUPL uses sim-
ilar notation, which allows us to assign a field name to a group of bits called a set.
A set can be made up of several individual variable bits (e.g., PRESET, CLEAR, EN-
ABLE), or a group of indexed variables (e.g., D3, D,, Dy, Dy). A set can be com-
bined with a single variable or expression resulting in a new set in which the oper-
ation is performed on each element of the set. As long as the sets are the same size
(same number of bits), two sets can be combined in an expression, just like you
would combine single variables in a Boolean expression. The bits in the same posi-
tion in each set are combined according to the expression. This allows one equation
to describe the logical operation of all four full adder circuits in a four-bit adder.

Assume D, D,, Dy, D, has the value 1011 and Gi, G,, G;, G has the value 1100.
Let's define Dnum = [Ds, D,, D;, Dyl and Gnum = [G5, G,, G, Gyl Let’s also
define X = [X;, X5, X;, XJ where X is related to Dnum and Gnum as follows:

X = Dnum & Gnum;

What is the value of X after this operation?

Solution

Dy D, D,D, 1011

177 2 1112 AND (&) each bit position together
G, Go, G, Gy, 1100

X, X, X1, Xo 1000

Thus, X is a set of 4 bits with value 1000.

Refer to the CUPL source file in Figure 6-20. The specific pins for inputs and
outputs were chosen based on hardware characteristics of the GAL 16V8 PLD. We
will discuss the hardware and the features/limitations of each pin later in the book.
As a general rule for now, avoid using pins 19, 16, 15, and 12 if the output must be
fed back into the inputs of the PLD.

CUPL offers a convenient range notation when dealing with lists of sequentially
numbered pins, or indexed variables. The notation pin [2..5] = [A0..3] assigns pin 2
to Ay, pin3 to A;, pin 4 to A4,, and pin 5 to A;. You may have also noticed that there
is only one Carry input pin defined (pin 1). This is because the other Carry inputs
are the same pin as the previous adder circuit’s Carry outputs and can be internally
connected (fed back) through the PLD.

To name a set of bits, the keyword field is followed by the name you choose for
that set. The bits that make up the set are listed within square braces. An important
feature of this example is the use of indices 4 through 1 for the set named Cout. The
indices for the other sets are 3 through 0. This allows the Carry out of Bit 0 to be re-
ferred to as C1, which will be the same bit that is fed into the Carry in of the Bit 1
full adder.
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FIGURE 620 Source file fora  Name add4.pld ;Designer N.S.Widmer ;
4-bit full adder. Partno 1234567 ; Company Purdue University;
Date June 2 ; Assembly Tocci Text
Revision 01 ;Location Chapter 6 ;
Device Gl6v8 ; Format j ;
/* 4-bit full adder example */
/* INPUTS */
pin1 = CO; /*  Carry IN Labeled Carry bit zero*/
pin[2..5] =[A0..3]; /* 4-bit addend A */
pin[6..9] =[B0..3]; /* 4-bit addend B */
/¥ OUTPUTS */

pin [12,15,16,19] = [SO. . 3];
pin [13, 14,17, 18] = [C1 .. 4];

/* Use C4 (pin 18) for carry out of 4-bit

adder*/

/* SET Definitions */

field A =[A3..0];
field B=[B3..0];
field S = [S3..0];
field Cin = [C3..0];
field Cout = [C4 .. 1];

* Hardware Description
Cout = A&B # A&Cin # B&Cin;

S = A$ (B$Cin) ;

/* 4-bit Augend */

/* 4-bit Addend ¥/

/* 4-bit Sum */
/* Carry IN to each of 4 full adders */
/* Carry OUT from each full adder */

*/

/* One equation defines all 4 Carry out
bits */

/*This equation defines the 4-bit set of
the Sum */

Equations 6-2 and 6-3 (see Section 6-11) give the Boolean expressions for the
sum (§) and the carry out (Coud) of a full adder circuit. The hardware description
section of Figure 6-20 uses set notation to describe the logical combination of each
bit in each input set to generate the output sets. Note the $ symbol for the XOR op-
eration. The resultant circuit implemented on the GAL 16V8 is four full adder cir-
cuits connected as shown in Figure 6-21.

LRITVRUTTEIITIEEE 1. Give an example of a set of indexed variables.

2. How could the name Count be assigned to the indexed variables in 1?
3. In Example 6-15, what will be the value of X if X = Dnum & 0000?
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AUGEND Ag A, A Ag A
ADDEND Bs B, B, Bg B
Generate sum
CARRYin Cs C, C, Co Cin S=A8[B%Cin]
SUM S, S, S, So S
AUGEND Aa Az As Ao A Generate carry bi’ts_ .
ADDEND B, B, B, By B Cout = A&B # A&Cin # B&Cin
CARRYin Cs C, o Co Cin
CARRYout C4 C3 CZ C1 Cout
- Bg B, B, By
9 8 7 6
c <8 Cs C, / C, # 1
4 FA FA FA FA Co
gtz | 7 |2 | "™ | Bit 13 | sito
GAL16V8B
19 )
15 16 4 15 3 13 2
A / Ay J A, Ag
S, S, S, So

FIGURE 6-21 Full adder implemented on a GAL 16V8.
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SUMMARY

. To represent signed numbers in binary, a sign bit is attached as the MSB. A +

signisa 0,and a — signisa 1.

. The 2’s complement of a binary number is obtained by complementing each bit

and then adding 1 to the result.

. In the 2’s-complement method of representing signed binary numbers, positive

numbers are represented by a sign bit of 0 followed by the magnitude in its true
binary form. Negative numbers are represented by a sign bit of 1 followed by
the magnitude in 2’s-complement form.

. A signed binary number is negated (changed to a number of equal value but op-

posite sign) by taking the 2’s complement of the number, including the sign bit.

. Subtraction can be performed on signed binary numbers by negating (2’s com-

plementing) the subtrahend and adding it to the minuend.

. In BCD addition, a special correction step is needed whenever the sum of a

digit position exceeds 9 (1001).
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7.

10.

11.

12.

13.
14.

When signed binary numbers are represented in hexadecimal, the MSD of the
hex number will be 8 or greater when the number is negative; it will be 7 or less
when the number is positive.

. The arithmetic/logic unit (ALU) of a computer contains the circuitry needed to

perform arithmetic and logic operations on binary numbers stored in memory.

The accumulator is a register in the ALU. It holds one of the numbers being op-
erated upon, and it also is where the result of the operation is stored in the ALU.
A full adder performs the addition on two bits plus a carry input. A parallel bi-
nary adder is made up of cascaded full adders.

The problem of excessive delays caused by carry propagation can be reduced
by a look-ahead carry logic circuit.

IC adders such as the 74LS83/HC83 and the 741.5283/HC283 can be used to con-
struct high-speed parallel adders and subtractors.

A BCD adder circuit requires special correction circuitry.

Integrated-circuit ALUs are available that can be commanded to perform a wide
range of arithmetic and logic operations on two input numbers.

IMPORTANT TERMS

carry subtrahend half adder (HA)
sign bit minuend carry propagation (carry
sign-magnitude system overflow ripple)
2’s-complement system arithmetic/logic unit (ALU) look-ahead carry
negation accumulator register BCD adder
augend full adder (FA)
addend parallel adder/subtractor
PROBLEMS
SECTION 6-1
B  6-1. Add the following in binary. Check your results by doing the addition in dec-
imal.
(@ 1010 + 1011 (@ 0.1011 + 0.1111
(b) 1111 + 0011 (e) 10011011 + 10011101
(o) 1011.1101 + 11.1
SECTION 6-2
B 62. Represent each of the following signed decimal numbers in the 2’s-comple-
ment system. Use a total of eight bits including the sign bit.
(@ +32 (e +127 @ -1 (m) +84
b)) —14 ® —-127 G) —128 n +3
(© +63 ® +89 k) +169 0 -3
@ —104 ) —55 ® o P) —190
B  63. Each of the following numbers represents a signed decimal number in the 2’s-

complement system. Determine the decimal value in each case. (Hint: Use
negation to convert negative numbers to positive.)

(@ 01101 (o) 01111011

() 11101 (d) 10011001
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64.

65.

6-7.

(e) 01111111 (h) 10000001
® 10000000 (@ 01100011
(® 11111111 () 11011001

(a) What range of signed decimal values can be represented using 12 bits in-
cluding the sign bit?

(b) How many bits would be required to represent decimal numbers from
—32,768 to +32,767?

List, in order, all of the signed numbers that can be represented in five bits us-

ing the 2's-complement system.

Represent each of the following decimal values as an 8-bit signed binary

value. Then negate each one.

@ +73 ) —12 (© +15 (@ —1 (e —128 (@ +127

What is the range of unsigned decimal values that can be represented in 10

bits? What is the range of signed decimal values using the same number of

bits?

SECTIONS 6-3 AND 6-4

6-8.

69.

6-10.

The reason why the sign-magnitude method for representing signed numbers

is not used in most computers can readily be illustrated by performing the fol-

lowing.

(@) Represent +12 in eight bits using the sign-magnitude form.

(b) Represent —12 in eight bits using the sign-magnitude form.

(¢) Add the two binary numbers and note that the sum does not look any-
thing like zero.

Perform the following operations in the 2’s-complement system. Use eight bits

(including the sign bit) for each number. Check your results by converting the

binary result back to decimal.

(@ Add +9 to +6. @ Subtract +21 from —13.
(b) Add +14 to —17. (g) Subtract +47 from +47.
(c) Add +19 to —24. (h) Subtract —36 from —15.
(d) Add —48 to —80. (i) Add +17 to —17.

(e) Subtract +16 from +17. (G Subtract —17 from —17.

Repeat Problem 6-9 for the following cases, and show that overflow occurs in

each case.
(a) Add +37 to +95. (b) Subtract +37 from —95.

SECTIONS 6-5 AND 6-6

6-11.

612

Multiply the following pairs of binary numbers, and check your results by do-
ing the multiplication in decimal.

(@ 111 X 101 (c) 101.101 X 110.010

(b) 1011 X 1011 (d .1101 X .1011

Perform the following divisions. Check your results by doing the division in
decimal.

() 1100 = 100 (o) 10111 + 100

(b) 111111 + 1001 (d) 10110.1101 + 1.1

SECTIONS 6-7 AND 6-8

6-13.

Add the following decimal numbers after converting each to its BCD code.
(@ 74 + 23 (@ 385 + 118
(b) 58 + 37 (e) 998 + 003
(©) 147 + 380 ® 623 + 599
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6-14. Find the sum of each of the following pairs of hex numbers.

(@) 3E91 + 2F93 (d) 2FFE + 0002
() 91B + 6F2 (e) FFF + OFF
(c) ABC + DEF (® D191 + AAAB
6-15. Perform the following subtractions on the pairs of hex numbers.
(a) 3E91 — 2F93 (d 0200 — 0003
() 91B — 6F2 (e) FO00 — EFFF
(©) 0300 — 005A ® 2F00 — 4000

6-16. The owner’s manual for a small microcomputer states that the computer has
usable memory locations at the following hex addresses: 0200 through 03FF,
and 4000 through 7FDO0. What is the total number of available memory loca-
tions?

6-17. (a) A certain memory location holds the hex data 77. If this represents an un-

signed number, what is its decimal value?
(b) If this represents a signed number, what is its decimal value?
(©) Repeat (a) and (b) if the data value is E5.

SECTION 6-11

6-18. Convert the FA circuit of Figure 6-7 to all NAND gates.

6-19. Write the truth table for a half adder (inputs A and B; outputs SUM and
CARRY). From the truth table, design a logic circuit that will act as a half
adder.

6-20. A full adder can be implemented in many different ways. Figure 6-22 shows
how one may be constructed from two half adders. Construct a truth table for
this arrangement, and verify that it operates as a FA.

SECTION 6-12

6-21. Refer to Figure 6-9. Determine the contents of the A register after the follow-
ing sequence of operations: [4] = 0000, [0100] — (B, [S] — [4], [1011] — [B],
[s1 - (Al

6-22. Refer to Figure 6-9. Assume that each FF has %1y = o = 30 ns and a setup
time of 10 ns, and that each FA has a propagation delay of 40 ns. What is the
minimum time allowed between the PGT of the LOAD pulse and the PGT of
the TRANSFER pulse for proper operation?

T T T T T T T T T T T T T T T T oo T oo |
|
|
| SUM |
A—T> > —» SUM
| HA HA [
CARRY CARRY
5 —1> > |
I I
I l
l I
- !
CARRY IN | :
i
|
| : CARRY OUT
! |
L j
Full adder

FIGURE 6-22 Problem 6-20.
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D 623

C,D 624.

In the adder and subtractor circuits discussed in this chapter, we gave no con-
sideration to the possibility of overflow. Overflow occurs when the two num-
bers being added or subtracted produce a result that contains more bits than
the capacity of the accumulator. For example, using four-bit registers, includ-
ing a sign bit, numbers ranging from +7 to —8 (in 2’s complement) can be
stored. Therefore, if the result of an addition or subtraction exceeds +7 or —8,
we would say that an overflow has occurred. When an overflow occurs, the
results are useless since they cannot be stored correctly in the accumulator
register. To illustrate, add +5 (0101 and +4 (0100), which results in 1001.
This 1001 would be interpreted incorrectly as a negative number since there is
a 1 in the sign-bit position.

In computers and calculators there are usually circuits that are used to de-
tect an overflow condition. There are several ways to do this. One method
that can be used for the adder that operates in the 2’s-complement system
works as follows:

1. Examine the sign bits of the two numbers being added.
2. Examine the sign bit of the result.

3. Overflow occurs whenever the numbers being added are both positive
and the sign bit of the result is 1 or when the numbers are both negative
and the sign bit of the result is 0.

This method can be verified by trying several examples. Readers should
try the following cases for their own clarification: (1) 5 + 4; (2) —4 + (—06);
(3 3 + 2. Cases 1 and 2 will produce an overflow, and case 3 will not. Thus,
by examining the sign bits, one can design a logic circuit that will produce a
1 output whenever the overflow condition occurs. Design this overflow cir-
cuit for the adder of Figure 6-9.

Add the necessary logic circuitry to Figure 6-9 to accommodate the transfer
of data from memory into the A register. The data values from memory are
to enter the A register through its D inputs on the PGT of the first TRANS-
FER pulse; the data from the sum outputs of the FAs will be loaded into A4
on the PGT of the second TRANSFER. In other words, a LOAD pulse fol-
lowed by two TRANSFER pulses is required to perform the complete se-
quence of loading the B register from memory, loading the A register from
memory, and then transferring their sum into the A register. (Hint: Use a
flip-flop X to control which source of data gets loaded into the D inputs of
the accumulator.)

SECTION 6-13

C,D 625.

Design a look-ahead carry circuit for the adder of Figure 6-9 which generates
the carry C; to be fed to the FA of the MSB position based on the values of Ay,
By, Gy, 41, By, Ay, and B,. In other words, derive an expression for Cj in terms
of Ay, By, Gy, A1, By, A5, and B,. (Hint: Begin by writing the expression for C;
in terms of Ay, By, and C;. Then write the expression for G, in terms of 4;, By,
and C). Substitute the expression for C; into the expression for C,. Then write
the expression for Cj in terms of A,, B,, and C,. Substitute the expression for
G, into the expression for C;. Simplify the final expression for C3 and put it in
sum-of-products form. Implement the circuit.)
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SECTION 6-14
6-26. Show the logic levels at each input and output of Figure 6-10(a) when 3544 is
added to 103g.

SECTION 6-15

6-27. For the circuit of Figure 6-13, determine the sum outputs for the following
cases.

(@) Aregister = 0101 (+5), Bregister = 1110 (—2); SUB = 1, ADD = 0
(b) Aregister = 1100 (—4), Bregister = 1110 (—2); SUB = 0, ADD = 1
(©) Repeat (b) with ADD = SUB = 0.

6-28. Show how the gates of Figure 6-13 can be implemented using three 74HC00
chips.

6-29. Modify the circuit of Figure 6-13 so that a single control input, X, is used in
place of ADD and SUB. The circuit is to function as an adder when X = 0,
and as a subtractor when X = 1. Then simplify each set of gates. (Hint: Note
that now each set of gates is functioning as a controlled inverter.)

SECTION 6-16

6-30. Assume the following inputs in Figure 6-14: [4] = 0101, [B] = 1001, ¢, = 0.
Determine the logic levels at [S], X, [2], and CARRY.

6-31. Would it make any difference in the BCD adder of Figure 6-14 if the , of the
upper adder was held LOW while the G, of the lower adder was used as the
carry input? Explain.

6-32. Assume that the A register in Figure 6-15 holds the BCD code for 376 and that
the B register holds the BCD code for 469. Determine the outputs.

SECTION 6-17

6-33. Determine the F, Cy.4, and OVR outputs for each of the following sets of in-
puts applied to a 74LS382.
@ [S] =011, [4] = 0110, [Bl = 0011, Cy =0
M) [S] = 001, [4] = 0110, [B] = 0011, Cy = 1
© [S1 =010, [A4] = 0110, [B] = 0011, Cy =1

6-34. Show how the 74HC382 can be used to produce [F] = [A]. (Hint: Recall that
special property of an XOR gate.)

6-35. Determine the 3 outputs in Figure 6-17 for the following sets of inputs.
@ [S] =110, [4] = 10101100, [B] = 00001111
(b) [S1 = 100, [4] = 11101110, [B = 00110010

6-36. Add the necessary logic to Figure 6-17 to produce a single HIGH output
whenever the binary number at A4 is exactly the same as the binary number at
B. Apply the appropriate select input code (three codes can be used).

SECTION 6-19

6-37. Consider the circuit of Figure 6-9. Assume that the A, output is stuck LOW.
Follow the sequence of operations for adding two numbers, and determine
the results that will appear in the A register after the second TRANSFER pulse
for each of the following cases. Note that the numbers are given in decimal,
and the first number is the one loaded into B by the first LOAD pulse.
@ 2+3 (D 8+3
® 3+7 © 9+3
©7+3
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T 6-38. A technician breadboards the adder/subtractor of Figure 6-13. During testing,
she finds that whenever an addition is performed, the result is 1 more than ex-
pected, and when a subtraction is performed, the result is 1 less than ex-
pected. What is the likely error that the technician made in connecting this cir-
cuit?

T 6-39. The BCD adder of Figure 6-14 is tested, and the results are recorded in Table
6-4. Consider each of the following possible faults, and indicate whether or
not it could be the actual fault. Explain each answer.

(@) The A, and A, inputs of the correction adder are internally shorted to-
gether.

(b) There is an open path from X to the correction adder.

(©) The upper OR gate inputs are internally shorted together.

(d) The AND gate output is stuck LOW.

SECTION 6-20

6-40. Assume the sets A and B have been defined in a CUPL source file and they
have the following values: A = [1001], B = [1100]. Also assume that C = 1.
Determine the value for set X in each of the following CUPL expressions:

@ X=A#B
b)) X=A&B
© X=A$B
d X=1

© X=A#C
® X=A&C
® X=A$C

DRILL QUESTION
6-41. Define each of the following terms.

(@) Full adder (® Accumulator

(b) 2’s-complement (8 Parallel adder
(©) Arithmetic/logic unit (h) Look-ahead carry
(d) Sign bit (i Negation

(e) Overflow () Bregister

MICROCOMPUTER APPLICATIONS

C,D 642. In a typical microprocessor ALU, the results of every arithmetic operation are
usually (but not always) transferred to the accumulator register as in Figures
6-9, 6-13, and 6-16. In most microprocessor ALUs, the result of each arithmetic
operation is also used to control the states of several special flip-flops called
flags. These flags are used by the microprocessor when it is making decisions
during the execution of certain types of instructions. The three most common
flags are:

S (sign flag). This FF is always in the same state as the sign of the last re-
sult from the ALU.

TABLE 6-4
ByB:B\By  Asdadidy  X3¥oE R )
¢)) 0011 0110 1001 0
@ 0111 1000 1111 0

6)] 1001 1001 0010 0
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Z (zero flag). This flag is set to 1 whenever the result from an ALU opera-
tion is exactly 0. Otherwise, it is cleared to 0.

C (carry flag). This FF is always in the same state as the carry from the
MSB of the ALU.

Using the adder/subtractor of Figure 6-13 as the ALU, design the logic circuit
that will implement these flags. The sum outputs and C; output are to be used
to control what state each flag will go to upon the occurrence of the TRANS-
FER pulse. For example, if the sum is exactly 0 (i.e., 0000), the Z flag should
be set by the PGT of TRANSFER,; otherwise, it should be cleared.

643. In working with microcomputers it is often necessary to move binary numbers
from an 8-bit register to a 16-bit register. Consider the numbers 01001001 and
10101110, which represent +73 and —82, respectively, in the 2’s-complement
system. Determine the 16-bit representations for these decimal numbers.

6-44. Compare the 8- and 16-bit representations for +73 from Problem 6-42. Then
compare the two representations for —82. There is a general rule that can be
used to convert easily from 8-bit to 16-bit representations. Can you see what
it is? It has something to do with the sign bit of the 8-bit number.

ANSWERS TO SECTION REVIEW QUESTIONS

SECTION 6-1

1. (@ 11101 (b) 101.111 (©) 10010000

SECTION 6-2

. (@ 00001101  (b) 11111001

. @ —29 () —64 © +126
. —2048 to +2047 4. Seven 5. —32768
. (@) 10000 (b) 10000000 (©) 1000

. Refer to text.

(©) 10000000

NOAW N =

SECTION 6-3
1. True 2. (@) 100010, = —30,,
G)) 0000002 = O]Q

SECTION 6-4

1. @ 01111, = +15,,  (b) 11111, = —~1,, 2. By
comparing the sign bit of the sum with the sign bits of
the numbers being added

SECTION 6-5
1. 1100010

SECTION 6-7

1. The sum of at least one decimal digit position is
greater than 1001 (9). 2. The correction factor is
added to both the units and the tens digit positions.

SECTION 6-8

1. 923 2. 3DB 3. 2F, 77EC, 6D

SECTION 6-10

1. Three; two 2. 5=0,G6G=1 b)) G =0
SECTION 6-12

1. One; four; four 2. 0100

SECTION 6-14
1. Five chips 2. 240 ns 3.1

SECTION 6-15

1. To add the 1 needed to complete the 2’s-complement
representation of the number in the B register

2. 0010 3. 1101 4. False; the 1’'s complement
appears there.

SECTION 6-16

1. Two four-bit adders and correction logic 2. The
correction logic detects a sum greater than 9 and then
causes a 0110 to be added to the sum.

SECTION 6-17

1. F=1011; OVR = 0; c\+4 =0 2. F= 0111
OVR = 1 C]\+4 =1 3. = 1000

4. 3 = 01101011; Crey = o =0

5. 3 = 11111111 6. Eight

SECTION 6-20

1. [Qs, Q2 Qy, Qdl
2. Field Count = [Qs, Q,, Q1, Qol
3. X=10,0,0,0]
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B OBJECTIVES

Upon completion of this chapter, you will be able to:

B Understand the operation and characteristics of synchronous and asynchronous
counters.

Construct counters with MOD numbers less than 2%

Identify IEEE/ANSI symbols used in IC counters and registers.

Construct both up and down counters.

Connect multistage counters.

Analyze and evaluate various types of presettable counters.

Design arbitrary-sequence synchronous counters.

Understand several types of schemes used to decode different types of counters.
Anticipate and eliminate the effects of decoding glitches.

Compare the major differences between ring and Johnson counters.
Analyze the operation of a frequency counter and of a digital clock.
Recognize and understand the operation of various types of IC registers.

Apply existing troubleshooting techniques used for combinational logic systems
to troubleshoot sequential logic systems.

Program a GAL 16V8 to operate as a counter.

B INTRODUCTION

In Chapter 5 we saw how flip-flops could be connected to function as counters and
registers. At that time we studied only the basic counter and register circuits. Digi-
tal systems employ many variations of these basic circuits, mostly in integrated-
circuit form. In this chapter we will look at how FFs and logic gates can be com-
bined to produce different types of counters and registers.

Because there are a great number of topics in this chapter, it has been divided
into two parts. In PART I we will cover the principles of counter operation, the var-
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ious counter circuit arrangements, and representative IC counters. PART II will
present counter applications, types of IC registers, and troubleshooting. The
chapter concludes with a section on programming a PLD to operate as a counter
circuit.

As you progress through this chapter, you will find that you are constantly
drawing on your understanding of the material we have covered in the preceding
chapters. It is a good idea to go back and review previously learned material when-

ever you need to.

[ S e S

A

L.

PART |

7-1 ASYNCHRONOUS (RIPPLE) COUNTERS

320

Figure 7-1 shows a four-bit binary counter circuit such as the one discussed in
Chapter 5. Recall the following points concerning its operation:

1. The clock pulses are applied only to the CILK input of flip-flop A. Thus, flip-flop
A will toggle (change to its opposite state) each time the clock pulses make a
negative (HIGH-to-LOW) transition. Note that /= K = 1 for all FFs.

2. The normal output of flip-flop A4 acts as the CLK input for flip-flop B, and so flip-
flop B will toggle each time the A output goes from 1 to 0. Similarly, flip-flop C
will toggle when B goes from 1 to 0, and flip-flop D will toggle when C goes
from 1 to 0.

3. FF outputs D, C, B, and A represent a four-bit binary number with D as the MSB.
Let’s assume that all FFs have been cleared to the 0 state (CLEAR inputs are not
shown). The waveforms in Figure 7-1 show that a binary counting sequence
from 0000 to 1111 is followed as clock pulses are continuously applied.

4. After the NGT of the fifteenth clock pulse has occurred, the counter FFs are in
the 1111 condition. On the sixteenth NGT, flip-flop A goes from 1 to 0, which
causes flip-flop B to go from 1 to 0, and so on, until the counter is in the 0000
state. In other words, the counter has gone through one complete cycle (0000
through 1111) and has recycled back to 0000, from where it will begin a new
counting cycle as subsequent clock pulses are applied.

In this counter, each FF output drives the CLK input of the next FF. This type of
counter arrangement is called an asynchronous counter because the FFs do not
change states in exact synchronism with the applied clock pulses; only flip-flop A4
responds to the clock pulses. FF B must wait for FF A to change states before it can
toggle; FF C must wait for FF B, and so on. Thus, there is a delay between the re-
sponses of successive FFs. This delay is typically 5-20 ns per FF. In some cases, as
we shall see, this delay can be troublesome. This type of counter is also often re-
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FIGURE 7-1

L Recycle to 0000

Four-bit asynchronous (ripple) counter.

ferred to as a ripple counter due to the way the FFs respond one after another in
a kind of rippling effect. We will use the terms asynchronous counter and ripple
counter interchangeably.

Signal Flow

It is conventional in circuit schematics to draw the circuits (wherever possible) such
that the signal flow is from left to right, with inputs on the left and outputs on the
right. In this chapter we will often break with this convention, especially in diagrams
showing counters. For example, in Figure 7-1, the CLK inputs of each FF are on the
right, the outputs are on the left, and the input clock signal is shown coming in from
the right. We will use this arrangement because it makes the counter operation easier
to understand and follow, since the order of the FFs is the same as the order of the bits
in the binary number that the counter represents. In other words, FF A (which is the
LSB) is the rightmost FF, and FF D (which is the MSB) is the leftmost FF. If we adhered
to the conventional left-to-right signal flow, we would have to put FF A4 on the left
and FF D on the right, which is opposite to their positions in the binary number that
the counter represents. In some of the counter diagrams later in the chapter, we will
employ the conventional left-to-right signal flow so that you will get used to seeing it.
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The counter in Figure 7-1 starts off in the 0000 state, and then clock pulses are
applied. Some time later the clock pulses are removed, and the counter FFs read
0011. How many clock pulses have occurred?

Solution

The apparent answer seems to be 3, since 0011 is the binary equivalent of 3.
However, with the information given there is no way to tell whether or not the
counter has recycled. This means that there could have been 19 clock pulses; the
first 16 pulses bring the counter back to 0000, and the last 3 bring it to 0011. There
could have been 35 pulses (two complete cycles and then three more), or 51
pulses, and so on.

MOD Number

The counter in Figure 7-1 has 16 distinctly different states (0000 through 1111).
Thus, it is a MOD-16 ripple counter. Recall that the MOD number is always equal
to the number of states that the counter goes through in each complete cycle before
it recycles back to its starting state. The MOD number can be increased simply by
adding more FFs to the counter. That is,

MOD number = 2% D

where N is the number of FFs connected in the arrangement of Figure 7-1.

A counter is needed that will count the number of items passing on a conveyor
belt. A photocell and light source combination is used to generate a single pulse
each time an item crosses its path. The counter must be able to count as many as
one thousand items. How many FFs are required?

Solution

It is a simple matter to determine what value of N is needed so that 2% = 1000.
Since 2° = 512, 9 FFs will not be enough. 2'° = 1024, so 10 FFs would produce a
counter that could count as high as 1111111111, = 1023;,. Therefore, we should
use 10 FFs. We could use more than 10, but it would be a waste of FFs, since any
FF past the tenth one will not be needed.

Frequency Division

In Chapter 5 we saw that in the basic counter each FF provides an output waveform
that is exactly balfthe frequency of the waveform at its CLK input. To illustrate, sup-
pose that the clock signal in Figure 7-1 is 16 kHz. Figure 7-2 shows the FF output
waveforms. The waveform at output A4 is an 8-kHz square wave, at output B it is 4
kHz, at output C'it is 2 kHz, and at output D it is 1 kHz. Notice that the output of
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FIGURE 7-2 Counter waveforms showing frequency division by 2 for each FF.

flip-flop D has a frequency equal to the original clock frequency divided by 16. In
general,

" In any counter, the signal at the output of the last FF (i.e., the MSB)
will have a frequency equal to the input clock frequency divided by
the MOD number of the counter.

For example, in a MOD-16 counter, the output from the last FF will have a fre-
quency of 1/16 of the input clock frequency. Thus, it can also be called a divide-by-
16 counter. Likewise, a MOD-8 counter has an output frequency of 1/8 the input
frequency; it is a divide-by-8 counter.

The first step involved in building a digital clock is to take the 60-Hz signal and
feed it into a Schmitt-trigger, pulse-shaping circuit* to produce a square wave as
illustrated in Figure 7-3. The 60-Hz square wave is then put into a MOD-60
counter, which is used to divide the 60-Hz frequency by exactly 60 to produce a
1-Hz waveform. This 1-Hz waveform is fed to a series of counters, which then
count seconds, minutes, hours, and so on. How many FFs are required for the
MOD-60 counter?

60 Hz 1 Hz

MOD-60 | J_L Counters,

counter displays,etc.

60 Hz

v

FIGURE 7-3 Example 7-3.

Pulse
shaper

:

Solution

There is no integer power of 2 that will equal 60. The closest is 2° = 64. Thus, a
counter using six FFs would act as a MOD-64 counter. Obviously, this will not
satisfy the requirement. It seems that there is no solution using a counter of the

* See Section 5-21.
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type shown in Figure 7-1. This is partly true; in the next section we will see how
to modify this basic binary counter so that virtually any MOD number can be
obtained and we will not be limited to values of 2”.

Review Questions 1. True or false: In an asynchronous counter, all FFs change states at the same

ume.

2. Assume that the counter in Figure 7-1 is holding the count 0101. What will be
the count after 27 clock pulses?

3. What would be the MOD number of the counter if three more FFs were
added?

7-2 COUNTERS WITH MOD NUMBERS < 2V

The basic asynchronous counter of Figure 7-1 is limited to MOD numbers that are
equal to 2%, where Nis the number of FFs. This value is actually the maximum MOD
number that can be obtained using N flip-flops. The basic counter can be modified
to produce MOD numbers less than 2¥ by allowing the counter to skip states that are
normally part of the counting sequence. One of the most common methods for do-
ing this is illustrated in Figure 7-4, where a three-bit counter is shown. Disregarding
the NAND gate for a moment, we can see that the counter is a MOD-8 binary
counter which will count in sequence from 000 to 111. However, the presence of
the NAND gate will alter this sequence as follows:

1. The NAND output is connected to the asynchronous CLEAR inputs of each FF. As
long as the NAND output is HIGH, it will have no effect on the counter. When it
goes LOW, however, it will clear all of the FFs so that the counter immediately
goes to the 000 state.

2. The inputs to the NAND gate are the outputs of the Band Cflip-flops, and so the
NAND output will go LOW whenever B = ¢ = 1. This condition will occur when
the counter goes from the 101 state to the 110 state on the NGT of input pulse 6.
The LOW at the NAND output will immediately (generally within a few nanosec-
onds) clear the counter to the 000 state. Once the FFs have been cleared, the
NAND output goes back HIGH, since the B = € = 1 condition no longer exists.

3. The counting sequence is, therefore,

CBA

000 €
001
010
011
100
101
810 - (temporary state needed to clear counter)
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AllJ, K
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FIGURE 74 MOD-6 counter produced by clearing a MOD-8 counter when a count of six
(110) occurs.

Although the counter does go to the 110 state, it remains there for only a few
nanoseconds before it recycles to 000. Thus, we can essentially say that this
counter counts from 000 (zero) to 101 (five) and then recycles to 000. It essen-
tially skips 110 and 111 so that it goes through only six different states; thus, it is
a MOD-6 counter.

Notice that the waveform at the B output contains a spike or glitch caused by
the momentary occurrence of the 110 state before clearing. This glitch is very nar-
row and so would not produce any visible indication on indicator LEDs or numeri-
cal displays. It could, however, cause a problem if the B output were being used to
drive other circuitry outside the counter. It should also be noted that the C output
has a frequency equal to one-sixth of the input frequency; in other words, this
MOD-6 counter has divided the input frequency by six. The waveform at Cis not a
symmetrical square wave (50 percent duty cycle), because it is HIGH for only two
clock cycles, whereas it is LOW for four cycles.
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State Transition Diagram

Figure 7-5(a) is the state transition diagram for the MOD-6 counter of Figure 7-4,
showing how FFs C, B, and A change states as pulses are applied to the CLK input
of flip-flop A. Recall that each circle represents one of the possible counter states
and that the arrows indicate how one state changes to another in response to an in-
put clock pulse.

If we assume a starting count of 000, the diagram shows that the states of the
counter change normally up until the count of 101. When the next clock pulse oc-
curs, the counter temporarily goes to the 110 count before going to the stable 000
count. The dotted lines indicate the temporary nature of the 110 state. As stated ear-
lier, the duration of this temporary state is so short that for most purposes we can
consider that the counter goes directly from 101 to 000 (solid arrow).

Note that there is no arrow into the 111 state because the counter can never ad-
vance to that state. However, the 111 state can occur on power-up when the FFs
come up in random states. If that happens, the 111 condition will produce a LOW
at the NAND gate output and immediately clear the counter to 000. Thus, the 111
state is also a temporary condition that ends up at 000.

Displaying Counter States

Sometimes during normal operation, and very often during testing, it is necessary to
have a visible display of how a counter is changing states in response to the input
pulses. We will take a detailed look at several ways of doing this later in the text.
For now, Figure 7-5(b) shows one of the simplest methods using individual indica-
tor LEDs for each FF output. Each FF output is connected to an INVERTER whose
output provides the current path for the LED. For example, when output A is HIGH,
the INVERTER output goes LOW and the LED turns ON. The bright LED indicates
A = 1. When output A4 is LOW, the INVERTER output is HIGH and the LED turns
OFF. The dark LED indicates 4 = 0.

(@) What will be the status of the LEDs when the counter is holding the count of
five?

(b) What will the LEDs display as the counter is clocked by a 1-kHz input?

(c) Will the 110 state be visible on the LEDs?

Solution
(@ Since 5,0 = 101,, the 2° and 2% LEDs will be ON, and the 2! LED will be OFF.

(b) At 1 kHz, the LEDs will be switching ON and OFF so rapidly that they will ap-
pear to the human eye to be ON all the time at about half the normal brightness.

(©) No; the 110 state will persist for only a few nanoseconds as the counter recycles
to 000.

Changing the MOD Number

The counter of Figures 7-4 and 7-5 is a MOD-6 counter because of the choice
of inputs to the NAND gate. Any desired MOD number can be obtained by
changing these inputs. For example, using a three-input NAND gate with in-
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C cr K B cr K A cr K
LED is bright
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B e—
C o—

(b)

FIGURE 75 (a) State transition diagram for the MOD-6 counter of Figure 7-4. (b) LEDs are
often used to display the states of a counter.
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puts 4, B, and C, the counter would function normally until the 111 condition was
reached, at which point it would immediately reset to the 000 state. Ignoring
the very temporary excursion into the 111 state, the counter would go from 000
through 110 and then recycle back to 000, resulting in a MOD-7 counter (seven
states).

Determine the MOD number of the counter in Figure 7-6(a). Also determine the
frequency at the D output.

JLIL

— D J c J B J A J
CLK< CLK] cu<<ol_ cu<<o-L 30 kHz
CLR K CLR K CLR K CLR K

T b Y

*All J, K inputs are HIGH

o O |O

(a)

— D J OP c J B J A J
CLK< CLK< cu<<o]_ cLKgo-L 1 MHz

JLIL
CLR K CLR K CLR K CLR K
D

*All J, K inputs are HIGH

(b)

FIGURE 7-6 (a) MOD-14 ripple counter; (b) MOD-10 (decade) ripple counter.

Solution

This is a four-bit counter, which would normally count from 0000 through 1111.
The NAND inputs are D, C, and B, which means that the counter will immediately
recycle to 0000 when the 1110 (decimal 14) count is reached. Thus, the counter
actually has 14 stable states 0000 through 1101 and is therefore a MOD-14 counter.
Since the input frequency is 30 kHz, the frequency at output D will be

30 kHz

14 = 2.14 kHz
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General Procedure
To construct a counter that starts counting from all 0s and has a MOD number of X:

1. Find the smallest number of FFs such that 2¥ = X, and connect them as a
counter. If 2% = X, do not do steps 2 and 3.

2. Connect a NAND gate to the asynchronous CLEAR inputs of all the FFs.

3. Determine which FFs will be in the HIGH state at 2 count = X; then connect the
normal outputs of these FFs to the NAND gate inputs.

Construct a MOD-10 counter that will count from 0000 (zero) through 1001
(decimal 9).

Solution

2® = 8 and 2 = 16; thus, four FFs are required. Since the counter is to have stable
operation up to the count of 1001, it must be reset to zero when the count of 1010
is reached. Therefore, FF outputs D and B must be connected as the NAND gate
inputs. Figure 7-6(b) shows the arrangement.

Decade Counters/BCD Counters

The MOD-10 counter of Example 7-6 is also referred to as a decade counter.
In fact, a decade counter is any counter that has 10 distinct states, no matter
what the sequence. A decade counter such as the one in Figure 7-6(b), which
counts in sequence from 0000 (zero) through 1001 (decimal 9), is also com-
monly called a BCD counter, because it uses only the 10 BCD code groups
0000, 0001, . . ., 1000, and 1001. To reiterate, any MOD-10 counter is a decade
counter; and any decade counter that counts in binary from 0000 to 1001 is a BCD
counter.

Decade counters, especially the BCD type, find widespread use in applications
where pulses or events are to be counted and the results displayed on some type of
decimal numerical readout. We shall examine this later in more detail. A decade
counter is also often used for dividing a pulse frequency exactly by 10. The input
pulses are applied to flip-flop 4, and the output pulses are taken from the output of
flip-flop D, which has one-tenth the frequency of the input.

In Example 7-3, a MOD-60 counter was needed to divide the 60-Hz line frequency
down to 1 Hz. Construct an appropriate MOD-60 counter.

Solution

2°=32and 2° = 64, and so we need six FFs, as shown in Figure 7-7. The counter
is to be cleared when it reaches the count of 60 (111100). Thus, the outputs of
flip-flops Qs Qy, Os, and Q, must be connected to the NAND gate. The output of
flip-flop Qs will have a frequency of 1 Hz.
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1 Hz *
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Tozfjﬁif 7

FIGURE 7-7 MOD-60 counter.

A

1. What FF outputs should be connected to the clearing NAND gate to form a
MOD-13 counter?

2. True or false: All BCD counters are decade counters.

Review Questions

3. What is the output frequency of a decade counter that is clocked from a 50-
kHz signal?

7-3 1C ASYNCHRONOUS COUNTERS

There are several TTL and CMOS asynchronous counter ICs. One of them is the TTL
74LS293. Figure 7-8(a) shows the logic diagram for the 74LS293 as it would appear
in the manufacturer’s TTL data book. Some of the nomenclature is different from
what we have been using, but it should be easy to figure out. Note the following
points:

1. The 74LS293 has four J-K flip-flops with outputs Q,, Qi, &, Qs, where Q, is the
LSB and Qj is the MSB. The FFs are shown arranged with the LSB on the left.
This is done to satisfy the convention that the circuit input signals appear on the
left. We have been drawing our counters with the LSB on the right, so you will
have to get used to this arrangement.

2. Each FF has a CP(clock pulse) input, which is just another name for the CLK in-
put. The clock inputs to Q, and Q;, labeled CP, and CP;, respectively, are ex-
ternally accessible. The inversion bars over these inputs indicate that they are ac-
tivated by a NGT.

3. Each FF has an asynchronous active-LOW CLEAR input, (. These are connected
together to the output of a two-input NAND gate with inputs MR, and MR,,
where MR stands for master reset. Both MR inputs must be HIGH to clear the
counter to 0000.

4. Flip-flops Q,, O», and Q; are already connected as a three-bit ripple counter.
Flip-flop Q, is not connected to anything internally. This allows the user the op-
tion of either connecting Q, to O, to form a four-bit counter or using Q, sepa-
rately if desired.

The following examples will illustrate some of the ways the 74LS293 can be
wired to produce different counters. In these examples we will use the simplified
logic symbol shown in Figure 7-8(b).


Albustani
Rechteck



Section 7-3 / IC Asynchronous Counters # 331

7415293
J Q p— J Q J Q J Q
CPy—COP>CP —COP>CP +—Cper +—Opcp
K Cp Q K Cp Q ) K Cp Q K Cp Q
B L, I i T
CP,
MR1 ——
MR, —
OO 01 02 03
(LSB) (MSB)

*All J, K inputs are internally

@ connected HIGH.

+VCC

T(m

— (1
cp, e—Op>
7415293
__ (10)
cp, —Cp
_Ig) ® [@ & o
a2l na| =
MR, MR, Q Q@ O Q
(MSB) (LSB)
(b)

FIGURE 7-8 (a) Logic diagram for 74LS293 asynchronous counter IC; (b) block symbol
with pin numbers in parentheses.

Show how the 7415293 should be connected to operate as a MOD-16 counter with
a 10-kHz clock input. Determine the frequency at Q;.

Solution

Al MOD-16 counter requires four FFs, and so we must connect the Q, output to
CP,, the clock input of flip-flop Q; (see Figure 7-9). The 10-kHz pulses are applied
to CPy, the clock input of Q,. The output at Q; will have a frequency 1/16 of the
clock input frequency.
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7415293

cP,
—C>
10 kHz 5
P
L ooy
MR, MR,

QY QZ‘L o} oo‘

® f=10kHz/16 = 6256 Hz

FIGURE 79 7418293 wired as a MOD-16 counter.

Solution

Show how to wire the 74LS293 as a MOD-10 counter.

A MOD-10 counter requires four FFs, and so again we need to connect Q, to CP;.
This time, however, we want the counter to recycle back to 0000 when it tries to
go to the count of 1010 (10). Thus, the Qs and Q, outputs must be connected to
the master reset inputs; when they both go HIGH at the count of 1010, the NAND

output will immediately reset the counter to 0000.

The circuit wiring is shown in Figure 7-10. The state transition diagram is also
shown. Note that the temporary 1010 state is not shown. We also have not shown
the 1011, 1100, 1101, 1110, and 1111 states because they are not part of the
normal sequence of states for this counter. However, there is always a chance that
the counter could come up in one of these states at power-up, so it is important to
know how the counter will operate in the event that this happens. We will explore

this in one of the problems at the end of the chapter.

o
L
7415293
10 kHz CPO
MR MR l
! 2 Y oY oY

ka

FIGURE 7-10 7418293 wired as a MOD-10 counter.

———® f{=10kHz/10 =1 kHz

0000
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Show how to wire a 74LS293 as a MOD-14 counter.

Solution

When the counter reaches the count of 1110 (14), the Q;, Q,, and Q, outputs are
all HIGH. Unfortunately, the 74LS293’s built-in reset NAND gate has only two
inputs. Thus, we must add some extra logic to ensure that the counter will reset to
0000 when Q3 = Q, = Q; = 1. In fact, all we need is a two-input AND gate as
shown in Figure 7-11. You should verify that this arrangement operates as a MOD-
14 counter.

cP,
>
74LS2
10 kHz C_Po . 5293
T o0——
P Qs Q QO Q
MR, i MR, l #

» =10 kHz/14 = 714 Hz

o
PN

In Example 7-7 we divided the input frequency by 60 with a MOD-60 counter
using six J-K flip-flops and a NAND gate. Another way to get a MOD-60 counter is
shown in Figure 7-12. Explain how this circuit works.

— >

CP,
74L5293 _ 7415293
LIS N
MR; MR, Q3Q,0Q;Qp MR; MR, Q3Q,Q,Q

A

\4_ll| Aulll

P four = fin/BO

I
£,/10
MOD-10 MOD-6

FIGURE 7-12 Two 74LS293s combined to provide a frequency division of 60 by successive
divisions by 10 (MOD-10) and 6 (MOD-6). Note that the MOD-6 does not use CP, or Qy; it

uses only Qs, O, and Q.
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Solution

This circuit divides the input frequency by 60 in two steps. The 74LS293 counter
on the left is wired as a MOD-10 counter so that its output Qs has a frequency of
f./10. This signal is connected to the CP; input of the second 74LS293 counter,
which is wired as a MOD-6 counter (note that Q, is not being used). Thus, the Qs
output of the second counter will have the following frequency:

_ Jo/10 _ fin
Jou = 6 60

Example 7-11 shows that two (or more) counters can be cascaded to produce
an overall MOD number equal to the product of their individual MOD numbers.
This can be very useful in applications where a large amount of frequency division
is required.

IEEE/ANSI Symbol for 74L.S293 Counter

Figure 7-13 shows the IEEE/ANSI symbol for the 74LS293. This symbol contains sev-
eral new aspects of the IEEE/ANSI standard. As we describe these, you should con-
tinue to appreciate how the new IEEE/ANSI symbology is designed to tell us a lot
about the IC’s operation.

The symbol contains three distinct blocks. The top block (with the notches) is
the common-control block. The notation “CTR” defines this IC as a counter. Recall
from our discussion in Chapter 5 that the common-control block is used whenever
an IC has one or more inputs that are common to more than one of the circuits on
the chip. For the 74LS293, the MR, and MR, inputs are common to all the FFs in the
counter.

MR, and MR, are shown as active-HIGH inputs that are internally combined us-
ing the AND operation as indicated by the “&” notation. This indicates that both MR,
and MR, must be in their active states in order to clear the counter. The notation
“CT = 0” tells us that the action of the MR inputs is to make the count equal zero.

The middle block is labeled “DIV2” to indicate that it is a MOD-2 counter,
which, of course, is a single FF. DIV2 means that the counter will divide its clock in-
put frequency by 2. The bottom block is labeled “DIV8” to indicate that it is a MOD-8

FIGURE 7-13 IEEE/ANSI symbol 7415293

for the 7415293 IC.

TR

C
MR, @&— Common
MH; .__.EI CT=0 control block

— DIV 2
CPOQ—B>+ —® Q,

DIV 8

o—eQ,
CT< —eaqQ,

C?‘| .—B>+

2—e Q,
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counter. The clock inputs to each of these blocks are shown as activated by nega-
tive-going transitions. The “+” notation on each clock input indicates that the NGT
of the clock will cause the count to be incremented by 1. In other words, this is an
up counter, meaning that it counts up on each NGT. A “—” notation would be used
for a down counter (see Section 7-4).

While we will continue to use the traditional symbol for the 74LS293 and other
counters, we will use some of the notation from the IEEE/ANSI symbology. For ex-
ample, we will indicate a counter’'s MOD number using the DIV#% notation, where #
is the MOD number.

CMOS Asynchronous Counters

There are several asynchronous counters in the CMOS family. Most of them are
equivalents to the TTL versions. However, some CMOS asynchronous counter ICs
do not have a TTL counterpart. One of these is the 74HC4024; its logic symbol is
shown in Figure 7-14. It is a seven-bit counter with one asynchronous master reset
input. The seven FFs are internally connected as a MOD-128 ripple counter. The MR
input is active-HIGH and can be used to reset all of the FFs to the O state. Note that
we have used the notation “CTR DIV128” to signify that this is a MOD-128 counter.

The MOD number of this counter can be changed to less than 128 by using the
MR input as we did for the 74LS293. For example, if we connect outputs Q; and Qs
to an AND gate, and connect the gate output to MR, as soon as the counter reaches
0110000 (48,y), it will immediately clear to 0000000. Thus, the usable count se-
quence will be 0000000 to 0101111 (zero to 47), and it is a MOD-48 counter.

Another CMOS ripple counter that has no TTL counterpart is the 74HC4040,
which is a 12-bit counter with a single active-HIGH master reset input. The clock in-
put to this counter is a Schmitt-trigger type of input that permits the use of slow-
changing signals without producing erratic counting.

FIGURE 7-14 Logic symbol for the +Vee
CMOS 74HC4024 ripple counter.
The + sign indicates count-up (14} 74HC4024
operation.
I3 .L)C> CTR
* DIV128
@ [@ fe e Jo Jon (12)_]17)
(2) =
MR Qs Q5 Q Q3 Q Q; Q

(MSB) (LSB)
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1. A 2-kHz clock signal is applied to CP, of a 74LS293. What is the frequency at
Qs?

2. What would be the final output frequency if the order of the counters were re-
versed in Figure 7-12?

3. What is the MOD number of a 74HC4040 counter?
4. What would the notation “DIV64” mean on a counter symbol?

5. Which outputs would you connect to an AND gate to convert the 74HC4024
to a MOD-120 counter?

7-4 ASYNCHRONOUS DOWN COUNTER

All of the counters we have looked at thus far have counted upward from zero; that
is, they were up counters. It is a relatively simple matter to construct asynchronous
(ripple) down counters, which will count downward from a maximum count to
zero. Before looking at the circuit for a ripple down counter, let us examine the
count-down sequence for a three-bit down counter:

CBA
@ 111¢6——
© 110
6] 101
@ 100 Recycles
3  on T
@) 010
@)) 001
(©) 000 —

A, B, and Crepresent the FF output states as the counter goes through its sequence.
It can be seen that the A flip-flop (LSB) changes states (toggles) at each step in the
sequence just as it does in the up counter. The B flip-flop changes states each time
A goes from LOW to HIGH; C changes states each time B goes from LOW to HIGH.
Thus, in a down counter each FF, except the first, must toggle when the preceding
FF goes from LOW to HIGH. If the FFs have CLK inputs that respond to negative
transitions (HIGH to LOW), then an inverter can be placed in front of each CLK in-
put; however, the same effect can be accomplished by driving each FF CLK input
from the inverted output of the preceding FF. This is illustrated in Figure 7-15 for a
MOD-8 down counter.

The input pulses are applied to the A flip-flop. The A output serves as the CLK
input for the B flip-flop; the B output serves as the CLK input for the C flip-flop. The
waveforms at A, B, and C show that B toggles whenever A goes LOW to HIGH
(so that A goes HIGH to LOW) and C toggles whenever B goes LOW to HIGH.
This results in the desired down-counting sequence at the C, B, and A outputs. The
state transition diagram shows the sequence. Compare it with the diagram for the
MOD-8 up counter in Figure 5-47.

Down counters are not as widely used as up counters. Their major application
is in situations where it must be known when a desired number of input pulses
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All J, K inputs
are HIGH
—C J| e-B J| oA J
CLK <O-|— CLK <O—I— CLK JLI L
c K B K A K
Input
AN

B : i 5 l
c T I
t ! 5 E E i 5 i i :
(Cc"gx) 000 : 111 1 110 | 101 | 100 : 011 | 010 : 001 i 000 : 111
H : H H ' : ' , ' Recycles

G

FIGURE 7-15 MOD-8 down counter.

have occurred. In these situations the down counter is preset to the desired number
and then allowed to count down as the pulses are applied. When the counter
reaches the zero state, it is detected by a logic gate whose output then indicates that
the preset number of pulses has occurred. We shall discuss presettable counters in
Section 7-8.

. Review Questions 1. What is the difference between the counting sequence of an up counter and a

down counter?

2. Describe how an asynchronous down-counter circuit differs from an up-
counter circuit.
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7-D PROPAGATION DELAY IN RIPPLE COUNTERS

Ripple counters are the simplest type of binary counters, since they require the
fewest components to produce a given counting operation. They do, however, have
one major drawback, which is caused by their basic principle of operation: each FF
is triggered by the transition at the output of the preceding FF. Because of the in-
herent propagation delay time (#,4) of each FF, this means that the second FF will
not respond until a time 4,4 after the first FF receives an active clock transition; the
third FF will not respond until a time equal to 2 X t,4 after that clock transition; and
so on. In other words, the propagation delays of the FFs accumulate so that the Nth
FF cannot change states until a time equal to N X #,4 after the clock transition oc-
curs, This is illustrated in Figure 7-16, where the waveforms for a three-bit ripple
counter are shown.

FIGURE 7-16 Waveforms of a #1 #2 #3 #4 #5
three-bit ripple counter Input
illustrating the effects of FF
propagation delays for different '4—-—»! I I
input pulse frequencies. 1000 ns :I I : | :
] I |
A —l
Il I |1
Il I |
| i
B 50 ns | Hl
t [
1 I
/ |
100 ns I
C |
|
(a) 150 ns
#1 #2 #3 #4 #5
Input l—
fe— f
100 ns |
I T
A ] |
I
—>1 50 ke : |
ns | |
| |
B ! :
—> 50 ke |
ns I
| J—
c |
I
— 150 ns l<—
The 100
condition

does not occur.
{b)
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The first set of waveforms in Figure 7-16(a) shows a situation where an input
pulse occurs every 1000 ns (the clock period 7= 1000 ns) and it is assumed that
each FF has a propagation delay of 50 ns (f,q = 50 ns). Notice that the A4 flip-flop
output toggles 50 ns after the NGT of each input pulse. Similarly, B toggles 50 ns af-
ter A goes from 1 to 0, and C toggles 50 ns after B goes from 1 to 0. As a result,
when the fourth input NGT occurs, the C output goes HIGH after a delay of 150 ns.
In this situation the counter does operate properly in the sense that the FFs do even-
tually get to their correct states, representing the binary count. However, the situa-
tion worsens if the input pulses are applied at a much higher frequency.

The waveforms in Figure 7-16(b) show what happens if the input pulses occur
once every 100 ns. Again, each FF output responds 50 ns after the 1-to-0 transition
at its CIK input (note the change in the relative time scale). Of particular interest is
the situation after the falling edge of the fourth input pulse, where the C output
does not go HIGH until 150 ns later, which is the same time that the A output goes
HIGH in response to the fifth input pulse. In other words, the condition C = 1, B =
A = 0 (count of 100) never appears, because the input frequency is too high. This
could cause a serious problem if this condition were supposed to be used to control
some other operation in a digital system. Problems such as this can be avoided if the
period between input pulses is made longer than the total propagation delay of the
counter. That is, for proper counter operation we need

Lok = N X Loy 7-2)

where N = number of FFs. Stated in terms of input-clock frequency, the maximum
frequency that can be used is given by

1

TN by 73

JSovax

For example, suppose that a four-bit ripple counter is constructed using the 74LS112
J-K flip-flop. Table 5-2 shows that the 74LS112 has #p;;; = 16 ns and fpy, = 24 ns as
the propagation delays from CLK to Q. To calculate f,,, we will assume the “worst
case”; that is, we will use g = fpp. = 24 ns, so that

Jmax = —4 X 24 18 = 10.4 MHz

Clearly, as the number of FFs in the counter increases, the total propagation delay
increases and f,,, decreases. For example, a ripple counter that uses six 74LS112
FFs will have

1
Jonax = 6 X 24ns 6.9 MHz

Thus, asynchronous counters are not useful at very high frequencies, especially
for large numbers of bits. Another problem caused by propagation delays in asyn-
chronous counters occurs when the counter outputs are decoded. This problem is
discussed in Section 7-12. Despite these problems, the simplicity of asynchronous
counters makes them useful for applications where their frequency limitation is not
critical.
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1. Explain why a ripple counter's maximum frequency limitation decreases as
more FFs are added to the counter.

2. A certain J-K flip-flop has 4,4 = 12 ns. What is the largest MOD counter that
can be constructed from these FFs and still operate up to 10 MHz?

7-6 SYNCHRONOUS (PARALLEL) COUNTERS

The problems encountered with ripple counters are caused by the accumulated FF
propagation delays; stated another way, the FFs do not all change states simultane-
ously in synchronism with the input pulses. These limitations can be overcome with
the use of synchronous or parallel counters in which all of the FFs are triggered si-
multaneously (in parallel) by the clock input pulses. Since the input pulses are applied
to all the FFs, some means must be used to control when a FF is to toggle and when it
is to remain unaffected by a clock pulse. This is accomplished by using the Jand K in-

- puts and is illustrated in Figure 7-17 for a four-bit, MOD-16 synchronous counter.

If we compare the circuit arrangement for this synchronous counter with its
asynchronous counterpart in Figure 7-1, we can see the following notable differ-
ences:

B The CIK inputs of all of the FFs are connected together so that the input clock
signal is applied to each FF simultaneously.

B Only flip-flop 4, the LSB, has its Jand K inputs permanently at the HIGH level.
The J, K inputs of the other FFs are driven by some combination of FF outputs.

B The synchronous counter requires more circuitry than does the asynchronous
counter.

Circuit Operation

For this circuit to count properly, on a given NGT of the clock, only those FFs that
are supposed to toggle on that NGT should have /= K = 1 when that NGT occurs.
Let’s look at the counting sequence in Figure 7-17(b) to see what this means for
each FF.

The counting sequence shows that the A flip-flop must change states at each
NGT. For this reason, its Jand K inputs are permanently HIGH so that it will toggle
on each NGT of the clock input.

The counting sequence shows that flip-flop B must change states on each NGT
that occurs while A = 1. For example, when the count is 0001, the next NGT must
toggle B to the 1 state; when the count is 0011, the next NGT must toggle B to the
0 state; and so on. This operation is accomplished by connecting output A4 to the J
and K inputs of flip-flop B so that /= K= 1 only when 4 = 1.

The counting sequence shows that flip-flop € must change states on each NGT
that occurs while 4 = B = 1. For example, when the count is 0011, the next NGT
must toggle Cto the 1 state; when the count is 0111, the next NGT must toggle C to
the O state; and so on. By connecting the logic signal AB to FF C’s Jand K inputs,
this FF will toggle only when A = B = 1.

In a like manner, we can see that flip-flop D must toggle on each NGT that oc-
curs while A = B = C = 1. When the count is 0111, the next NGT must toggle D to
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FIGURE 7-17 Synchronous MOD-16 counter. Each FF is clocked by the NGT of the clock
input signal so that all FF transitions occur at the same time.

the 1 state; when the count is 1111, the next NGT must toggle D to the 0 state. By
connecting the logic signal ABC to FF D's J and K inputs, this FF will toggle only
when4=B=C=1.

The basic principle for constructing a synchronous counter can therefore be
stated as follows:

Each FF should have its J and K inputs connected such that they are
HIGH only when the outputs of all lower-order FFs are in the HIGH
state.
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Advantage of Synchronous Counters over Asynchronous

In a parallel counter all of the FFs will change states simultaneously; that is, they are
all synchronized to the NGTs of the input clock pulses. Thus, unlike the asynchro-
nous counters, the propagation delays of the FFs do not add together to produce
the overall delay. Instead, the total response time of a synchronous counter like the
one in Figure 7-17 is the time it takes one FF to toggle plus the time for the new
logic levels to propagate through a single AND gate to reach the J, Kinputs. That is,
for a synchronous counter,

total delay = FF t,q + AND gate t,4

This total delay is the same no matter how many FFs are in the counter, and it will
generally be much lower than with an asynchronous counter with the same number
of FFs. Thus, a synchronous counter can operate at a much higher input frequency.
Of course, the circuitry of the synchronous counter is more complex than that of the
asynchronous counter.

Actual ICs

There are many synchronous ICs in both the TTL and the CMOS logic families.
Some of the most commonly used devices are:

W 74ALS160/162, 74HC160/162: synchronous decade counters
W 74ALS161/163, 74HC161/163: synchronous MOD-16 counters

(2) Determine f;,. for the counter of Figure 7-17(a) if #,4 for each FF is 50 ns and
toa for each AND gate is 20 ns. Compare this value with f,,x for a MOD-16 rip-
ple counter.

(b) What must be done to convert this counter to MOD-32?

(©) Determine f,., for the MOD-32 parallel counter.

Solution

(@ The total delay that must be allowed between input clock pulses is equal to
FF f,q4 + AND gate f,q. Thus, Tox = 50 + 20 = 70 ns, and so the parallel
counter has

1
Snax = ——— = 14.3 MHz (parallel counter)
70 ns

A MOD-16 ripple counter uses four FFs with #,q = 50 ns. Thus, /.« for the rip-
ple counter is

1

4X50ns 5 MHz (ripple counter)

ﬁnax -

(b) A fifth FF must be added, since 2° = 32. The CLK input of this FF is also tied to
the input pulses. Its / and K inputs are fed by the output of a four-input AND
gate whose inputs are 4, B, C, and D.
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(©) fax Is still determined as in (a) regardless of the number of FFs in the parallel
counter. Thus, f., is still 14.3 MHz.

—

. What is the advantage of a synchronous counter over an asynchronous
counter? What is the disadvantage?

2. How many logic devices are required for a MOD-64 parallel counter?

3. What logic signal drives the J, K inputs of the MSB flip-flop for the counter of
question 2?

7-7 SYNCHRONOUS DOWN AND UP/DOWN COUNTERS

In Section 7-4 we saw that a ripple counter could be made to count down by using
the inverted output of each FF to drive the next FF in the counter. A parallel down
counter can be constructed in a similar manner—that is, by using the inverted FF
outputs to drive the following J, K inputs. For example, the parallel up counter of
Figure 7-17 can be converted to a down counter by connecting the 4, B, and C out-
puts in place of 4, B, and C, respectively. The counter will then proceed to count
15, 14, 13,12 . . ., 3, 2,1, 0, 15, 14, 13, and so on.

Figure 7-18(a) shows how to form a parallel up/down counter. The control in-
put Up/Down controls whether the normal FF outputs or the inverted FF outputs
are fed to the Jand K inputs of the successive FFs. When Up/Down is held HIGH,
AND gates 1 and 2 are enabled while AND gates 3 and 4 are disabled (note the in-
verter). This allows the A and B outputs through gates 1 and 2 to the Jand K inputs
of FFs Band C. When Up/Down is held LOW, AND gates 1 and 2 are disabled while
AND gates 3 and 4 are enabled. This allows the 4 and B outputs through gates 3
and 4 into the Jand K inputs of FFs B and C. The waveforms in Figure 7-18(b) il-
lustrate the operation. Notice that for the first five clock pulses, Up/Down = 1 and
the counter counts up; for the last five pulses, Up/Down = 0, and the counter
counts down.

The nomenclature used for the control signal (Up/Down) was chosen to make
it clear how it affects the counter. The count-up operation is active-HIGH; the
count-down operation is active-LOW.

What problems might be caused if the Up/Down signal changes levels on the
NGT of the clock?

Solution

The FFs might operate unpredictably since some of them would have their fand K
inputs changing at about the same time that a NGT occurs at their CLK input.
However, the effects of the change in the control signal must propagate through
two gates before reaching the J, K inputs, so it is more likely that the FFs will
respond predictably to the levels that are at /, K prior to the NGT of CLK.
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FIGURE 7-18 (a) MOD-8 synchronous up/down counter. (b) The counter counts up when
the control input Up/Down = 1; it counts down when the control input = 0.

7-8 PRESETTABLE COUNTERS

Many synchronous (parallel) counters that are available as ICs are designed to be
presettable; in other words, they can be preset to any desired starting count either
asynchronously (independent of the clock signal) or synchronously (on the active
transition of the clock signal). This presetting operation is also referred to as paral-
lel loading the counter.

Figure 7-19 shows the logic circuit for a three-bit presettable parallel up counter.
The J, K, and CLK inputs are wired for operation as a parallel up counter. The asyn-
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FIGURE 7-19 Presettable parallel counter with asynchronous preset.

chronous PRESET and CLEAR inputs are wired to perform asynchronous presetting.
The counter is loaded with any desired count at any time by doing the following:

1. Apply the desired count to the parallel data inputs, P,, P, and P,
2. Apply a LOW pulse to the PARALLEL LOAD input, PL.

This procedure will perform an asynchronous transfer of the P,, P, and P, lev-
els into flip-flops &y, Oy, and Q,, respectively (Section 5-17). This jam transfer oc-
curs independently of the J, K, and CLK inputs. The effect of the CLK input will be
disabled as long as PL is in its active-LOW state, since each FF will have one of its
asynchronous inputs activated while PL = 0. Once PL returns HIGH, the FFs can
respond to their CLK inputs and can resume the counting-up operation starting from
the count that was loaded into the counter.

For example, let’s say that P, = 1, P, = 0, and P, = 1. While PL is HIGH, these
parallel data inputs have no effect. If clock pulses are present, the counter will per-
form the normal count-up operation. Now let’s say that PL is pulsed LOW when the
counter is at the 010 count (i.e., O, =0, Q; = 1, and Q, = 0). This LOW at PL will
produce LOWs at the CLR input of Q; and at the PRE inputs of Q, and Q, so that the
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counter will go to the 101 count regardless of what is occurring at the CLK input.
The count will hold at 101 until PL is deactivated (returned HIGH); at that time the
counter will resume counting up clock pulses from the count of 101.

This asynchronous presetting is used by several IC counters, such as the TTL
74A1S190, 74ALS191, 74ALS192, and 74ALS193 and the CMOS equivalents,
74HC190, 74HC191, 74HC192, and 74HC193.

Synchronous Presetting

Many IC parallel counters use synchronous presetting whereby the counter is preset
on the active transition of the same clock signal that is used for counting. The logic
level applied to the PL input determines whether the active clock transition will pre-
set the counter or whether it will be counted as in the normal counting operation.

Examples of IC counters that use synchronous presetting include the TTL
74ALS160, 74ALS161, 74ALS162, and 74ALS163 and their CMOS equivalents,
74HC160, 74HC161, 74HC162, and 74HC163.

1. What is meant when we say that a counter is presettable?
2. Describe the difference between asynchronous and synchronous presetting.

7-9 THE 74ALS193/HC193

Figure 7-20 shows the logic symbol and the input/output description for the
74ALS193 counter (and its CMOS counterpart, 74HC193). This counter can be de-
scribed as a MOD-16, presettable up/down counter with synchronous counting,
asynchronous preset, and asynchronous master reset. Let us look at the function of
each input and output.

Clock Inputs CP; and CPy,

The counter will respond to the positive-going transitions at one of two clock in-
puts. CPy is the count-up clock input. When pulses are applied to this input, the
counter will increment (count up) on each PGT to a maximum count of 1111; then
it recycles to 0000 and starts over. CPp, is the count-down clock input. When pulses
are applied to this input, the counter will decrement (count down) on each PGT to
a minimum count of 0000; then it recycles to 1111 and starts over. Thus, one clock
input or the other will be used for counting while the other clock input is inactive
(kept HIGH).

Master Reset (MR)

The master reset is an active-HIGH asynchronous input that resets the counter to the
0000 state. MR is a dc reset, and so it will hold the counter at 0000 as long as MR =
1. It also overrides all other inputs.
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PL Py P, P, Py Pin Description
l T T T T CPy Count-up clock input
I L (active rising edge)
CPy TCy
—5—>+ 74ALS193 O— CPp Count-down clock input
— tive risi d
cPy MOD-16 utp/down e, (active rising edge)
> - counter O—>» MR Asynchronous master reset input
(active HIGH)
* PL Asynchronous parallel load input
(active LOW)
MR Q; Q, O Qg
(@) Po-P3 Parallel data inputs
Qe-Q3 Flip-flop outputs
Mode Select o
— TCph Terminal count-down (borrow) output
MR | PL CPU CPD Mode (active LOW)
H X X1 X Asynch. reset — .
L L X X Asynch. preset TCy Tern_mnal count-up (carry) output
L H H| H No change (active) LOW
L H T H Count up (b)
L H H| T Count down
H = HIGH; L = LOW
X = Don't care; T = PGT

(c)

FIGURE 7-20 74ALS193 up/down synchronous counter with asynchronous preset and
reset: (a) logic symbol; (b) input/output description; (¢) mode-select table. (Courtesy of
Fairchild, a Schlumberger company)

Preset Inputs

The counter FFs can be preset to the logic levels present on the parallel data inputs
P, through P, by momentarily pulsing the parallel load input PL from HIGH to
LOW. This is an asynchronous preset that overrides the counting operation. PL will
have no effect, however, if the MR input is in its active-HIGH state.

Count Outputs

The current count is always present at the FF outputs Qs through Q,, where Q, is
the LSB and Qs is the MSB.

Terminal Count Outputs

The terminal count outputs are used when two or more 74ALS193s are connected as
a multistage counter to produce a larger MOD number. In the count-up mode, the
TCy; output of the lower-order counter is connected to the CP, input of the next
higher-order counter. In the count-down mode, the 7Cp, output of the lower-order
counter is connected to the CPp input of the next higher-order counter.

TCy, is the terminal count-up (also called the carry) output. It is generated on
the 74ALS193 chip using the logic shown in Figure 7-21(a). Clearly, 7Cy; will be
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CPUo—o{>—— CPDO—(4>—

TCU - TCD
Q, o ——ru-— Q, o————if

Q, —————— Q, ————
Qo O Q, |
(a) (b)

FIGURE 7-21 (a) Logic on the 74ALS193 for generating TCyy; (b) logic for generating 7Cp,.

LOW only when the counter is in the 1111 state and CPy is LOW. Thus, TCy; will re-
main HIGH as the counter counts up from 0000 to 1110. On the next PGT of CP,
the count goes to 1111, but TCy, does not go LOW until CP; returns LOW. The next
PGT at CP,; recycles the count to 0000 and also causes TCy to return HIGH. This
PGT at TCy, occurs when the counter recycles from 1111 to 0000, and it can be used
to clock a second 74ALS193 up counter to its next higher count.

TCy, is the terminal count-down (also called the borrow) output. It is generated
as shown in Figure 7-21(b). It is normally HIGH and does not go LOW until the
counter has counted down to the 0000 state and CPp, is LOW. When the next PGT
at CPp recycles the counter to 1111, it causes 7Cp, to return HIGH. This PGT at TCp
can be used to clock a second 74ALS193 down counter to its next lower count.

Refer to Figure 7-22(a), where a 74HC193 is wired as an up counter. The parallel
data inputs are permanently connected as 1011, and the CP;, PL, and MR input
waveforms are shown in Figure 7-22(b). Assume that the counter is initially in the
0000 state, and determine the counter output waveforms.

Solution

Initially (at %) the counter FFs are all LOW. This causes TCy to be HIGH. Just prior
to time # the PL input is pulsed LOW. This immediately loads the counter with
1011 to produce Qs =1, O, =0, Q; = 1, and Q, = 1. At £, the CP; input makes a
PGT, but the counter cannot respond to this because PL is still active at that time.
At times b, 4, %, and # the counter counts up on each PGT at CPy. After the PGT
at # the counter is in the 1111 state, but 7Cy does not go LOW until CP; goes
LOW at £. When the next PGT occurs at %, the counter recycles to 0000, and 7Cy
returns HIGH.

The counter will count up in response to the PGTs at % and &. The PGT at £,
will have no effect, because the MR goes HIGH prior to #, and remains active at
ho- This will reset all FFs to 0 and overrides the CPy; signal.
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PL 1 0O 1 1

Lododede
CPy
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CPp 74HC193 O— TC,
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(a)
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(b)

FIGURE 7-22 Example 7-14.
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MPLE Figure 7-23(a) shows the 74HC193 wired as a down counter. The parallel data
inputs are permanently wired as 0111, and the CP,, and PL waveforms are shown
in Figure 7-23(b). Assume that the counter is initially in the 0000 state, and

determine the output waveforms.

Solution

to

349

At 1, all of the FF outputs are LOW and CPp, is LOW. These are the conditions that
produce TCp, = 0. Prior to # the PL input is pulsed LOW. This immediately
presets the counter to 0111 and therefore causes TCp to go HIGH. The PGT of
CPp at t; will have no effect, since PL is still active. The counter will respond to
the PGTs at ¢, to # and counts down to 0000 at %. 7Cp, does not go LOW until £,
when CPp, goes LOW. At #, the PGT of CPp causes the counter to recycle to 1111

and also drives 7Cp, back HIGH.
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cPy
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|
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FIGURE 7-23 Example 7-15.

Variable MOD Number Using the 74ALS193/HC193

Presettable counters can be easily wired for different MOD numbers without the
need for additional logic circuitry. We will demonstrate this for the 74HC193 using
the circuit of Figure 7-24(a). Here, the 74HC193 is used as a down counter with its
parallel load inputs permanently connected at 0101 (5;,). Note that the TCp, output
is connected back to the PL input.

We will begin our analysis by assuming that the counter is in the 0101 state at
time #. Refer to Figure 7-24(b) for the counter waveforms.

The counter will decrement (count down) on the PGTs of CPp at times #; to .
At £ the counter is in the 0000 state. When CPp, goes LOW at #, it drives 7Cp, LOW.
This immediately activates the PL input and presets the counter back to the 0101
state. Note that TCp, stays LOW for only a short interval because once the counter
outputs go to 0101 in response to PL = 0, the condition needed to keep TCp, = 0 is
removed. Thus, there is only a narrow glitch at 7Cp,.
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o 1 0 1
. fYvy
cP P, P, P, P
! u ., 3 P, Py Py
i —
' cP, 74HC193 T,
JLrrL —p -
- Q; [Q; Q1 Q

Output f = f,,/5
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0

0

1

0

1

| | N

h Y t 5] T4 5 g 1 1g tg to th ty2
Counter Presets
presets to

to 0101
0101
(b)

(a) 74HC193 wired as a MOD-5 down counter (b) waveforms.

This same sequence is repeated at times % to t, and at equal intervals there-
after. If we examine the Q, waveform, we can see that it goes through one complete
cycle for every five cycles of CPy. For example, there are five clock cycles between
the PGT of Q, at f; and the PGT of Q, at #,. Thus, the frequency of the Q, wave-
form is one-fifth of the clock frequency.

This arrangement does have a peculiarity which you may have noticed: it
counts through six different states (5, 4, 3, 2, 1, 0), yet it divides the frequency by
JSive. This is due to the unusual way the count gets preset back to 5 in the middle of
a clock cycle. Thus, this counter’s operation violates our general rule that the num-
ber of states and the frequency-division ratio are the same. Since this type of
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arrangement is used principally for frequency division, we will ignore the counting
sequence and call it a MOD-5 counter because it divides the clock frequency by 5.

It is no coincidence that the frequency-division ratio (5) is the same as the num-
ber applied to the parallel data inputs (0101 = 5). In fact, we can vary the frequency
division by changing the logic levels applied to the parallel data inputs.

A wvariable frequency-divider circuit can be easily implemented by connecting
switches to the parallel data inputs of the circuit in Figure 7-24. The switches can be
set to a value equal to the desired frequency-division ratio. Notice that care must be
taken to choose the appropriate Q output, depending on the frequency-division ra-
tio that is selected.

Multistage Arrangement

As stated earlier, the TC, and TCy; outputs are used when two or more 74HC193
counters are connected in a multistage arrangement. In Figure 7-25, two 74HC193s
are connected in a two-stage up/down counter arrangement which effectively in-
creases the maximum up-count range to 0 — 255 and the down-count range to 255
— 0. The block on the left is the low-order stage and is clocked by one or the other
of the clock inputs; the TCy; and TCp, outputs of this stage drive the clock inputs of
the high-order stage. Note the use of a common Load input and common Reset in-
put. Also note that the parallel data inputs to the high-order stage are labeled as
P,P;P;P,, and the outputs of this stage are labeled as Q;0s0sQ,. An eight-bit num-
ber can be preset into this eight-bit counter, and the counter can be made to count
up or count down from that starting count. The count at any time appears at the

Qo—Q; outputs.

Po P1 P2 Ps Py Ps Pg P7
009
Load (t 1
_“_ PL Po P] Pz P3 ey PL PO P1 Pz P3 .
CPy TCy cPy o
Clock up »——o>4 P+
To higher-
J 74HC193 = 74HC193 __ Tohigher-order
CPp TCp CPp TCo stages
Clock down Dme—e——p>— >
MR QO Q1 02 03 MR QO Q1 QZ Q3
Reset ﬁL J l
) Jb Jl ®
Q0Q1Q, Q3 Q,Q5QQ;
Low-order High-order
stage stage

Note: Reset input has priority over Load and clock inputs.
Load input has priority over clock inputs.

FIGURE 7-25 Two 74HC193s connected in a two-stage arrangement to extend maximum

counting range.
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. Describe the function of the inputs PL and P, to P;.
. Describe the function of the MR input.
. True or false: The 74HC193 cannot be preset while MR is active.

. What logic levels must be present at CPy, PL, and MR in order for the
74A18193 to count pulses that appear at CPy?

5. What would be the maximum counting range for a four-stage counter made
up of 74HC193 ICs?

Review Questions

BN N e

7-10 MORE ON THE IEEE/ANSI DEPENDENCY NOTATION*

We can learn more about the dependency notation that is such an important part of
the IEEE/ANSI symbology by examining the IEEE/ANSI symbol for the 74ALS193 IC
shown in Figure 7-26. Each type of IC that we examine in this way will add to your
understanding of the new symbology and will help to prepare you for the more ex-
tensive use of these symbols in the future.

Once again, it should be stated that only the labels inside the rectangular out-
lines are specified by the IEEE/ANSI standard. The names or labels shown outside
the outlines are not standard, and in fact they will vary from one IC manufacturer to
another.

Some of the notation used in Figure 7-26 should be familiar. The symbol outline
is divided into the common-control block that affects all of the counter FFs, and the
four narrow rectangles representing the individual FFs. The bracketed number in-
side each FF rectangle denotes its relative weight in the counter. The label CTR
DIV16 signifies that this device, when operated normally, is a counter (CTR) with 16
states (i.e., a divide-by-16 counter). The MR input to the common-control block has
the notation “CT = 0” to indicate that the counter will reset to zero when MR is

HIGH.
FIGURE 7-26 IEEE/ANSI symbol — Common-control
for the 74A1S193 IC. CTR DIV16 block
CPy o—:>z+ 1CT = 15 >—e TC,
>G.1
CP 1= L —
DtGZ 2CT = 0 P>—e TG,
PL o—I 3
P, &————— 3D M —® Q,
P; @———i 2) —=e Q,
P; @— (8) —e Q,

* This section may be skipped without loss of continuity.
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Control Dependency (C)

The letter C in the label for an input denotes that that input controls the entry of
data into a storage element (i.e., a FF). Usually, C is used for block inputs that clock
data into a FF on its active transition. We saw this when we looked at the IEEE/ANSI
symbols for FFs in Chapter 5. In Figure 7-26, C is used for the parallel load input PL,
since this input controls the entry of data into the four counter FFs. Specifically, the
label C3 indicates that this input will control any other input that has the digit 3 as
a prefix in its label. In this case that includes inputs P, P;, P,, and P;, since they all
have the label 3D (it is shown only on the top FF block, but it is assumed to be the
same for the other FF blocks). The “D” part of the label denotes “data.”

What this all means is that when PL is in its active-LOW state, data from P,
through P; will be entered into flip-flops Qy to Qs. Since there is no edge-triggered
symbol at PL, it is understood that PL is in effect as long as it stays at its active-LOW
level.

Counting Direction (+ or —)

The CPy and CP; inputs are shown in Figure 7-26 as having two separate labels be-
cause they have several distinct internal effects. Let’s first consider the upper label.
This label for the CPy input is 2+. The plus sign (+) indicates that a PGT at this in-
put will increment the count by 1; in other words, it will cause the counter to count
up. Likewise, the upper label for the CP, input has a minus sign (—) to show that
this input will decrement the count by 1; in other words, it will cause it to count
down. The significance of the digits in front of the plus and minus signs will be ex-
plained in the following paragraphs.

AND Dependency (G)

The letter G in the label for an input denotes AND dependency. This means that an
input designated by a G followed by a digit is internally ANDed with any other in-
put or output that has the same digit as a prefix in its label. In Figure 7-26 we see
that the lower label for the CP; input is G1. This means that CP; is internally
ANDed with any input or output that has a 1 in its label. The upper label for CPp is
1—, and so there must be an AND dependency between CPp, and CP,. Specifically,
this AND dependency tells us that CP; must be HIGH in order for CPp to perform
its count-down function.

The lower label for CPy is G2, which indicates that there is an AND depen-
dency between CPp and any input or output that has a 2 in its label. For example,
the upper label for CP; is 2+, which tells us that CP, must be HIGH in order for
CP, to perform its count-up function.

Now let’s look at the TCp, output label. It is 2CT = 0. It includes a 2 in its label,
indicating that it has an AND dependency with CPy. Actually, since it is a 2, the
AND dependency is with ZﬁD Thus, the label for 7Cp, tells us that 7Cp, will go to
its active-LOW state when CPp is LOW and the count is zero (CT = 0). In a like
manner, the label for TCy, tells us that 7Cy, will go to its active-LOW state when CPy
is LOW and the count is 15 (CT = 15).
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1. Explain the meaning of control dependency and AND dependency.
2. Give the meaning of the following input labels:
@ t+ () G4 (o) C5 (@) 5D

7-11 DECODING A COUNTER

Digital counters are often used in applications where the count represented by the
states of the FFs must somehow be determined or displayed. One of the simplest
means for displaying the contents of a counter involves just connecting the output
of each FF to a small indicator LED [see Figure 7-5(b)]. In this way the states of the
FFs are visibly represented by the LEDs (bright = 1, dark = 0), and the count can
be mentally determined by decoding the binary states of the LEDs. For instance,
suppose that this method is used for a BCD counter and the states of the LEDs are
dark-bright-bright—dark, respectively. This would represent 0110, which we would
mentally decode as decimal 6. Other combinations of LED states would represent
the other possible counts.

The indicator LED method becomes inconvenient as the size (number of bits) of
the counter increases, because it is much harder to decode the displayed results
mentally. For this reason it would be preferable to develop a means for electroni-
cally decoding the contents of a counter and displaying the results in a form that
would be immediately recognizable and would require no mental operations.

An even more important reason for electronic decoding of a counter occurs be-
cause of the many applications in which counters are used to control the timing or
sequencing of operations automatically without human intervention. For example,
a certain system operation might have to be initiated when a counter reaches the
101100 state (count of 44,,). A logic circuit can be used to decode for or detect
when this particular count is present and then initiate the operation. Many opera-
tions may have to be controlled in this manner in a digital system. Clearly, human
intervention in this process would be undesirable except in extremely slow systems.

Active-HIGH Decoding

A MOD-X counter has X different states; each state is a particular pattern of 0s and
1s stored in the counter FFs. A decoding network is a logic circuit that generates X
different outputs, each of which detects (decodes) the presence of one particular
state of the counter. The decoder outputs can be designed to produce either a HIGH
or a LOW level when the detection occurs. An active-HIGH decoder produces HIGH
outputs to indicate detection. Figure 7-27 shows the complete active-HIGH decod-
ing logic for a MOD-8 counter. The decoder consists of eight three-input AND gates.
Each AND gate produces a HIGH output for one particular state of the counter.

For example, AND gate 0 has at its inputs the FF outputs C, B, and A. Thus, its
output will be LOW at all times except when A = B = C = 0, that is, on the count
of 000 (zero). Similarly, AND gate 5 has as its inputs the FF outputs C, B, and A, so
that its output will go HIGH only when C=1, B= 0, and 4 = 1, that is, on the
count of 101 (decimal 5). The rest of the AND gates perform in the same manner for
the other possible counts. At any one time only one AND gate output is HIGH, the
one which is decoding for the particular count that is present in the counter. The
waveforms in Figure 7-27 show this clearly.
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FIGURE 7-27 Using AND gates to decode a MOD-8 counter.

The eight AND outputs can be used to control eight separate indicator LEDs,

which represent the decimal numbers 0 through 7. Only one LED will be on at a
given time, indicating the proper count.

The AND gate decoder can be extended to counters with any number of states.

The following example illustrates.

How many AND gates are required to decode completely all of the states of a
MOD-32 binary counter? What are the inputs to the gate that decodes for the count
of 21?7
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Solution

A MOD-32 counter has 32 possible states. One AND gate is needed to decode for
each state; therefore, the decoder requires 32 AND gates. Since 32 = 2°, the
counter contains five FFs. Thus, each gate will have five inputs, one from each FF.
To decode for the count of 21 (that is, 10101,) requires AND gate inputs of E, D,
C, B, and A, where E is the MSB flip-flop.

Active-LOW Decoding

If NAND gates are used in place of AND gates, the decoder outputs will produce a
normally HIGH signal, which goes LOW only when the number being decoded oc-
curs. Both types of decoders are used, depending on the type of circuits being dri-
ven by the decoder outputs.

Figure 7-28 shows a common situation in which a counter is used to generate a
control waveform which could be used to control devices such as a motor,
solenoid valve, or heater. The MOD-16 counter cycles and recycles through its
counting sequence. Each time it goes to the count of 8 (1000), the upper NAND
gate will produce a LOW output, which sets flip-flop X to the 1 state. Flip-flop X
stays HIGH until the counter reaches the count of 14 (1110), at which time the
lower NAND gate decodes it and produces a LOW output to clear X to the O state.
Thus, the X output is HIGH between the counts of 8 and 14 for each cycle of the
counter.

1
D Je C J
CLK <O—|_- CLK <

.Lc;_f_
T
é

CLK
_ 1 _ _ 1 _ 1
D Ko C K B Ko A Ko
D —4
§
[ &
A
e L
Decodes 0
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D — S) 1000 1110
C |
B—1
A —
A
Decodes

for 1110

FIGURE 7-28 Example 7-17.
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FIGURE 7-29 BCD counters Input pulses
usually have their count BCD counter —< JLIMLM
displayed on a single display
device. D C B A —— FF outputs
Y Y Y Y
Decoder/display
unit 171 7-segment
11 display

BCD Counter Decoding

A BCD counter has 10 states that can be decoded using the techniques described
previously. BCD decoders provide 10 outputs corresponding to the decimal digits 0
through 9 represented by the states of the counter FFs. These 10 outputs can be
used to control 10 individual indicator LEDs for a visual display. More often, instead
of using 10 separate LEDs, a single display device is used to display the decimal
numbers 0 through 9. One class of decimal displays contains seven small segments
made of a material (usually LEDs or liquid-crystal displays) which either emits light
or reflects ambient light. The BCD decoder outputs control which segments are illu-
minated in order to produce a pattern representing one of the decimal digits.

We will go into more detail concerning these types of decoders and displays in
Chapter 9. However, since BCD counters and their associated decoders and displays
are very commonplace, we will use the decoder/display unit (see Figure 7-29) to
represent the complete circuitry used to display visually the contents of a BCD
counter as a decimal digit.

1. How many gates are needed to decode a six-bit counter fully?

2. Describe the decoding gate needed to produce a LOW output when a MOD-
64 counter is at the count of 23.

7-12 DECODING GLITCHES

In Section 7-5 we discussed the effects of FF propagation delays in ripple counters.
As we saw then, the accumulated propagation delays serve essentially to limit the
frequency response of ripple counters. The delays between FF transitions can also
cause problems when decoding a ripple counter. The problem occurs in the form of
decoding glitches or spikes at the outputs of some of the decoding gates. This is
illustrated in Figure 7-30 for a MOD-4 ripple counter.

The waveforms at the outputs of each FF and decoding gate are shown in the
figure. Notice the propagation delay between the clock waveform and the 4 output
waveform and between the 4 waveform and the B waveform. The glitches in the X,
and X, decoding waveforms are caused by the delay between the 4 and B wave-
forms. X is the output of the AND gate decoding for the normal 00 count. The 00
condition also occurs momentarily as the counter goes from the 01 to the 10 count,
as shown by the waveforms. This is because B cannot change states until A goes
LOW. This momentary 00 state lasts only for several nanoseconds (depending on £,4
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FIGURE 7-30 FF and decoding
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of flip-flop B) but can be detected by the decoding gate if the gate’s response is fast
enough. Hence, the spike at the X, output.

A similar situation produces a glitch at the X, output. X, is decoding for the 10
condition, and this condition occurs momentarily as the counter goes from 11 to 00
in response to the fourth clock pulse, as shown in the waveforms. Again, this is due
to the delay of flip-flop B’s response after A has gone LOW.

Although the situation is illustrated for a MOD-4 counter, the same type of situ-
ation can occur for any ripple counter. This is because ripple counters work on the
“chain-reaction” principle, whereby each FF triggers the next one, and so on. The
spikes at the decoder outputs may or may not present a problem, depending on
how the counter is being used. When the counter is being used only to count pulses
and display the results, the decoding spikes are of no consequence because they
are very short in duration and will not even show up on the display. However,
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when the counter is used to control other logic circuits, such as was done in Figure
7-28, the spikes can cause improper operation. For example, in Figure 7-28, a spike
at the output of either decoding NAND gate would cause flip-flop X to be set or
cleared at the wrong time.

We can predict where in the asynchronous counter’s sequence a temporary
state will occur by stepping through a counter state transition one FF at a time. For
example, let’s look at the actual step-by-step process by which a ripple counter goes
from 011 (3) to 100 (4

¢ B A4
0 1 1 3
temporary { 0 ID 0D 2 < FF A toggles first
states 0) 0" 0 (0 < and causes B to toggle,
10 0 @B < which causes C to toggle.

Note the occurrence of two temporary states, 010 and 000.

In situations where the decoding spikes cannot be tolerated, there are two ba-
sic solutions to the problem. The first possibility is to use a parallel counter instead
of a ripple counter. Recall that in a parallel counter the FFs are all triggered at the
same time by the clock pulses so that it appears that the conditions that produced
the decoder spikes cannot occur. However, even in a parallel counter the spikes
may occur because the FFs will not all necessarily have the same #,q, especially
when some FFs may be loaded more heavily than others.

Strobing

A more reliable method for eliminating the decoder spikes is to use a technique
called strobing. This technique uses a signal called a strobe signal to keep the de-
coding AND gates disabled (outputs at 0) until all of the FFs have reached a stable
state in response to the negative clock transition. This is illustrated in Figure 7-31,

s

Xy Ae—] X, Ae— X, Ae—
0 Be— 1 Be— 2 Be— 3 X3

Clock 1
0 e
| | | |
I | | :
Strobe 1 — | | | |
| | | ! —
| i | !
i | ' !
O T
L5}
T Strobe = 1
Strobe = 0 decoders enabled

decoders disabled

FIGURE 7-31 Use of a strobe signal to eliminate decoding spikes.
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where the strobe signal is connected as an input to each decoding gate. The ac-
companying waveforms show that the strobe signal goes LOW when the clock
pulse goes HIGH. During the time that the strobe is LOW, the decoding gates are
kept LOW. The strobe signal goes HIGH to enable the decoding gates some time #,
after the clock pulse goes LOW. 1 is chosen to be greater than the total time it
takes the counter to reach a stable count, and it depends, of course, on the FF de-
lays and the number of FFs in the counter. In this way the decoding gate outputs
will not contain any spikes, because they are disabled during the time the FFs are in
transition.

The strobe method is not used if a counter is used only for display purposes,
since the decoding spikes are too narrow to affect the display. The strobe signal is
used when the counter is used in control applications like that of Figure 7-28, where
the spikes could cause erroneous operation.

Review Questions 1. Explain why the decoding gates for an asynchronous counter may have

7-13

glitches on their outputs.
2. How does strobing eliminate decoding glitches?

CASCADING BCD COUNTERS

BCD counters are often used whenever pulses are to be counted and the results dis-
played in decimal. A single BCD counter counts from 0 through 9 and then recycles
to 0. To count to larger decimal values, we can cascade BCD counter stages as
shown in Figure 7-32. This multistage arrangement operates as follows:

1. Initially, all counters are cleared to the O state. Thus, the decimal display is 000.

2. As input pulses arrive, the units BCD counter advances one count per pulse. Af-
ter nine pulses have occurred, the hundreds and tens BCD counters are still at 0,
and the units counter is at 9 (binary 1001). Thus, the decimal display reads 009.

3. On the tenth input pulse the units counter recycles to 0, causing its flip-flop D
output to go from 1 to 0. This 1-to-0 transition acts as the clock input for the tens
counter and causes it to advance one count. Thus, after 10 input pulses, the dec-
imal readout is 010.

Hundreds Tens Units
Input
BCD BCD BCD ~
counter 4 counter < counter < —I—I—J—LJ—L
D |C |B |A D |]C |IB |A D |C |B |A
YYVYY YYY JV Y \}
Decoder/display Decoder/display Decoder/display
0-9 0-9 0-9

FIGURE 7-32 Cascading BCD counters to count and display numbers from 000 to 999.
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4. As additional pulses occur, the units counter advances one count per pulse, and
each time the units counter recycles to 0, it advances the tens counter one count.
Thus, after 99 input pulses have occurred, the tens counter is at 9, as is the units
counter. The decimal readout is thus 099.

5. On the hundredth input pulse, the units counter recycles to 0, which in turn
causes the tens counter to recycle to 0. The flip-flop D output of the tens counter
thus makes a 1-to-0 transition, which acts as the clock input for the hundreds
counter and causes it to advance one count. Thus, after 100 pulses the decimal
readout is 100.

6. This process continues up until 999 pulses. On the 1000th pulse, all of the coun-
ters recycle back to 0.

It should be obvious that this arrangement can be expanded to any desired
number of decimal digits simply by adding on more stages. For example, to count
up to 999,999 will require six BCD counters and associated decoders and displays.
In general, then, we need one BCD counter per decimal digit.

~ Each BCD counter in a cascaded arrangement such as in Figure 7-32 could be a
variable-MOD counter such as the 74L5293 wired as a MOD-10 counter; or it could
be an IC that is internally wired as a BCD counter such as the 74LS90 and 74HC192.

7-14 SYNCHRONOUS COUNTER DESIGN*

Many different counter arrangements are available as ICs—asynchronous, synchro-
nous, and combined asynchronous/synchronous. Most of these count in a normal
binary sequence, although their counting sequences can be somewhat altered using
the methods we demonstrated for the 74293 and 74193 ICs. There are situations,
however, where a counter is required that follows a sequence that is not counting
in normal binary, for example, 000, 010, 101, 001, 110, 000, . . . .

Several methods exist for designing counters that follow arbitrary sequences.
We will present the details for one common method that uses J-K flip-flops in a syn-
chronous counter configuration. The same method can be used in designs with D
flip-flops. The technique is one of several design procedures that are part of an area
of digital circuit design called sequential circuit design, which is normally part of
an advanced course.

Basic Idea
In synchronous counters all of the FFs are clocked at the same time. Before each
clock pulse, the Jand K input of each FF in the counter must be at the correct level
to ensure that the FF goes to the correct state. For example, consider the situation
shown in Table 7-1. When the next clock pulse occurs, the Jfand K inputs of the FFs
must be at the correct levels that will cause flip-flop Cto change from 1 to 0, flip-
flop B from 0 to 1, and flip-flop A from 1 to 1 (i.e., no change).

The process of designing a synchronous counter, then, becomes one of design-
ing the logic circuits that decode the various states of the counter to supply the logic
levels to each Jand K input. The inputs to these decoder circuits will come from the

* This topic may be omitted without affecting the continuity of the remainder of the book.
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TABLE 7-1 TABLE 7-2 J-K flip-flop excitation table.
Present State Next State Transilioknk 2 PRESFM Statt: v NEX"I"SIatc

at Output N) N+ 1 K

C B A C B A R % & : T
1 0 1 0 1 1 00 0 0 0 X
01 0 1 1 x
150 1 0 x 1
1-1 1 1 X 0

outputs of one or more of the FFs. To illustrate, for the synchronous counter of Fig-
ure 7-17, the AND gate that feeds the Jand K inputs of flip-flop C decodes the states
of flip-flops A and B. Likewise, the AND gate that feeds the J and K inputs of flip-
flop D decodes the states of A, B, and C.

J-K Excitation Table

Before we begin the process of designing the decoder circuits for each Jand K in-
put, we must first review the operation of the J-K flip-flop using a different ap-
proach called an excitation table (Table 7-2). The leftmost column of this table lists
each possible FF output transition. The second and third columns list the FF’s pre-
sent state, symbolized as Q(N), and the next state, symbolized as Q(V + 1), for each
transition. The last two columns list the J and K levels required to produce each
transition. Let’s examine each case.

0 — 0 TRANSITION The FF present state is at 0 and is to remain at 0 when a clock
pulse is applied. From our understanding of how a J-K flip-flop works, this can
happen when either /= K = 0 (no-change condition) or /=0 and K =1 (clear
condition). Thus, / must be at 0, but K can be at either level. The table indicates this
with a “0” under J and an “x” under K. Recall that “x” means the “don’t-care” condi-
tion.

0 — 1 TRANSITION The present state is 0 and is to change to a 1. This can hap-
pen when either /=1 and K = 0 (set condition) or /= K = 1 (toggle condition).
Thus, J must be a 1, but K can be at either level for this transition to occur.

1 — 0 TRANSITION The present state is 1 and is to change to a 0. This can hap-
pen when either /= 0 and K= 1or /= K= 1. Thus, Kmust be a 1, but /can be at
either level.

1 —> 1 TRANSITION The present state is a 1 and is to remain a 1. This can happen
when either /= K= 0orJ= 1and K = 0. Thus, Kmust be a 0 while /can be at ei-
ther level.

The use of this J-K excitation table (Table 7-2) is a principal part of the syn-
chronous counter design procedure.
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Design Procedure

We will now go through a complete synchronous counter design procedure. Al-
though we will do it for a specific counting sequence, the same steps can be fol-
lowed for any desired sequence.

For our example, we will design a three-bit counter that goes through the se-
quence shown in Table 7-3. Notice that this sequence does not include the 101, 110,
and 111 states. We will refer to these states as undesired states.

For our example, the state transition diagram appears as shown in Figure 7-33.
The 000 through 100 states are connected in the expected sequence. The new idea
used in this diagram is the inclusion of the undesired states. They must be included
in our design in case the counter accidentally gets into one of these states upon
power-up or due to noise. The circuit designer can choose to have each of these un-
desired states go to any state upon the application of the next clock pulse. We
choose to have them all go to the 000 state from which the correct sequence will be
generated.

For our example, the information is shown in Table 7-4. The left-hand portion
of the table lists every possible state, even those that are not part of the sequence.
We label these as the PRESENT states. The right-hand portion lists the NEXT state

FIGURE 7-33 State transition

diagram for the synchronous
counter design example.
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TABLE 7-4
PRESENT State NEXT State
G B A C B A
line 1 0 0 0 0 0 1
2 0 0 1 0 1 0
3 0 1 0 0 1 1
4 0 1 1 1 0 0
5 1 0 0 0 0 0
6 1 0 1 0 0 0
7 1 1 0 0 0 0
8 1 1 1 0 0 0

for each PRESENT state. These are obtained from the state transition diagram in Fig-
ure 7-33. For instance, line 1 shows that the PRESENT state of 000 has the NEXT
state of 001, and line 5 shows that the PRESENT state of 100 has the NEXT state of
000. Lines 6, 7, and 8 show that the undesired PRESENT states 101, 110, and 111 all
have the NEXT state of 000.

Step4. Add a column to this table for each fand K input. For each PRESENT
state, indicate the levels required at each J and K input in order to
produce the transition to the NEXT state. '

Our design example uses three FFs—C, B, and A—and each one has a Jand a
Kinput. Therefore, we must add six new columns as shown in Table 7-5. This com-
pleted table is called the circuit excitation table. The six new columns are the J
and K inputs of each FF. The entries under each Jand K are obtained by using Table
7-2, the J-K flip-flop excitation table that we developed earlier. We will demonstrate
this for several of the cases, and you can verify the rest.

Let’s look at line 1 in Table 7-5. The PRESENT state of 000 is to go to the NEXT
state of 001 on the occurrence of a clock pulse. For this state transition, the C flip-
flop goes from 0 to 0. From the J-K excitation table, we see that J- must be at 0 and
K at “x” for this transition to occur. The B flip-flop also goes from 0 to 0, and so

PRESENT State NEXT State
C B 4 GBI T iR e
line 1 0 0 O o o0 1 0 X 0 x 1 X
2 0 0 1 0O 1 o0 0 x 1 x X 1
3 0o 1 0 0o 1 1 0 X X 0 1 X
4 0o 1 1 1 0 O 1 x x 1 x 1
5 1 0 O 0 0 O x 1 0 x 0 x
6 1 0 1 0 0 0 x 1 0 x x 1
7 1 1 0 0O 0 o0 x 1 x 1 0 x
8 1 1 1 0 0 O x 1 x 1 x 1
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Jz = 0 and Kz = x. The A flip-flop goes from 0 to 1. Also from Table 7-2, we see
that /, = 1 and K, = x for this transition.

In line 4 in Table 7-5, the PRESENT state of 011 has a NEXT state of 100. For this
state transition, flip-flop C goes from 0 to 1, which requires /- = 1 and K. = x. Flip-
flops B and A are both going from 1 to 0. The J-K excitation table indicates that
these two FFs need J = x and K = 1 for this to occur.

The required Jand K levels for all other lines in Table 7-5 can be determined in
the same manner.

| Step 5. Design the logic circuits to generate the levels required at each Jand X
input.

Table 7-5, the circuit excitation table, lists six J, K inputs—/g, K¢, Ja, Kz, J4, and
K,. We must consider each of these as an output from its own logic circuit with in-
puts from flip-flops C, B, and A. Then we must design the circuit for each one. Let’s
design the circuit for /.

To do this we need to look at the PRESENT states of C, B, and A and the desired

levels at J, for each case. This information has been extracted from Table 7-5 and

presented in Figure 7-34(a). This truth table shows the desired levels at J, for each
PRESENT state. Of course, for some of the cases J, is a “don’t care.” To develop the
logic circuit for J,, we must first determine its expression in terms of C, B, and A. We
will do this by transferring the truth-table information to a three-variable Karnaugh
map and performing the K-map simplification as in Figure 7-34(b).

There are only two 1s in this K map, and they can be looped to obtain the term
AC, but if we use the don’t-care conditions at AB C and ABC as 1s, we can loop a
quad to obtain the simpler term C. Thus, the final expression is

JA=E

Now let’s consider K. We can follow the same steps as we did for J,. However,
a look at the entries under K in the circuit excitation table shows only 1s and don’t
cares. If we change all the don’t cares to 1s, then K, is always a 1. Thus, the final
expression is

K,=1
FIGURE 734 (a) Portion of A A !
circuit excitation table showing J, o
for each PRESENT state; (b) K PRESENT BC |\1 X /
map used to obtain the simplified CrBi A Ja
expression for J,. 0 0 0 1 BC| 0 X
0 0 1 X Ja = (—:
0 1 0 1 A=
0 1 1 x BC| 0 | x
1 0 0 0
1 0 1 X BC 1 X
1 1 0 0
1 1 11 X ] \

(a) (b}
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A A A A A A A A
—— _ ) S N
BC 0 0 BC [ X e BC 0 1 BC X X
BC | x X BC | 1 1 BC| O 0 BC [} x X
BC X X , BC 1 1 BC X X BC t‘l 1
BC| o I 1 BC || x X BC| x X BC| o 1
| TR, UREETLENE IeEN
] 1
Jc = AB Ke=1 Jg = AC Kg=A+C
(a) (b)

FIGURE 7-35 (a) K mappings for the J-and K. logic circuits; (b) K mappings for the Jz and
K5 logic circuits.

- In a similar manner, we can derive the expressions for J K, /g, and Kz The K
maps for these expressions are given in Figure 7-35. You might want to confirm
their correctness by checking them against the circuit excitation table.

Step 6. Implement the final expressions.

The logic circuits for each Jand K input are implemented from the expressions
obtained from the K mapping. The complete synchronous counter design is imple-
mented in Figure 7-36. Note that all FFs are clocked in parallel. You might want to
verify that the logic for the Jand K inputs agrees with Figures 7-34 and 7-35.

Stepper Motor Control

We will now apply this design procedure to a practical situation—driving a stepper
motor. A stepper motor is a motor that rotates in steps rather than in a continuous
motion, typically 15° per step. Magnetic coils or windings within the motor must be

AB

s
7

Je C } Jg B Ja A

CLOCK > CLK > CLK —> CLK
1 _ _ 1 _
o— Kc C ) Kg Bl & Ka A

FIGURE 7-36 Final implementation of the synchronous counter design example.
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energized and deenergized in a specific sequence in order to produce this stepping
action. Digital signals are normally used to control the current in each of the motor’s
coils. Stepper motors are used extensively in situations where precise position con-
trol is needed, such as in positioning of read/write heads on magnetic disks, in con-
trolling print heads in printers, and in robots.

Figure 7-37(a) is a diagram of a typical stepper motor with four coils. For the
motor to rotate properly, coils 1 and 2 must always be in opposite states; that is,
when coil 1 is energized, coil 2 is not, and vice versa. Likewise, coil 3 and coil 4
must always be in opposite states. The outputs of a two-bit synchronous counter are
used to control the current in the four coils; 4 and A control coils 1 and 2, and B
and B control coils 3 and 4. The current amplifiers are needed because the FF out-
puts cannot supply the amount of current that the coils require.

Since this stepper motor can rotate either clockwise (CW) or counterclockwise
(CCW), we have a Direction input, D, which is used to control the direction of rota-
tion. The state diagrams in Figure 7-37(b) show the two cases. For CW rotation to
occur, we must have D = 0, and the state of the counter, B4, must follow the se-

quence 11, 10, 00, 01, 11, 10, . . ., and so on, as it is clocked by the Step input sig-
- nal. For CCW rotation, D = 1, and the counter must follow the sequence 11, 01, 00,
10, 11, 01, . . ., and so on.

We are now ready to follow the six steps of the synchronous counter design
procedure. Steps 1 and 2 have already been done, so we can proceed with steps 3

s L et T

A
> > Synch A O____Z_ Current 4
D, . counter 3 | amplifiers
(Direction ? 4 - 1
input) B[O Y =
A 172
_H_J'L - Stepper
Step 3 motor
(clock) ‘
(a)
CW rotation CCW rotation
D=0 D=1

BA BA
(b)

FIGURE 7-37 (a) A synchronous counter supplies the appropriate sequential outputs to drive a stepper
motor; (b) state transition diagrams for both states of Direction input, D.
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TABLE 7-6  Circuit excitation

e —
table for Figure 7-37(b). msm mm“ﬁr . : ;
SDPWLA D B A R SR
0O 0 0 0 0 1 0 x 1 x
0 0 1 0o 1 1 1 x x 0
0 1 0 0O 0 O x 1 0 x
0 1 1 0 1 0 x 0 x 1
1 0 O 1 1 0 1 x 0 x
1 0 1 1 0 0 0 x x 1
1 1 0 1 1 1 X 0 1 x
1 1 1 1 0 1 X 1 x 0

and 4. Table 7-6 shows each possible PRESENT state of D, B, and A and the desired
NEXT state, along with the levels at each Jand K input needed to achieve the tran-
sitions. Note that in all cases, the Direction input, D, does not change in going from
the PRESENT to the NEXT state, because it is an independent input that is held
HIGH or LOW as the counter goes through its sequence.

Step 5 of the design process is presented in Figure 7-38 where the information
in Table 7-6 has been transferred to the K maps showing how each Jand Ksignal is

FIGURE 7-38 (a) K maps for Jp D D i .
and Ky (b) K maps for J, and
K, BA| o [\ BA

Ol

>

us]]
>
o
W
>
x
— x x (w)

BA | «x X BA /1 0
I 1 1 1
Jp = DA + DA Kg = DA + DA
=D®A =D@A
(a)
D D D D
BA 1\1 0 BA X b 4
BA [ X X BA 0 l 1 ]
BA | x ’x BAt1l 0
BA| 0 l1l Bﬂlxl X

=DB + DB K, =DB + DB
=D®B =D®B
(b)
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= - amplifiers
> B —> A | (Fig. 7-37)
-9
Jg B [—e— a A —1
-1
F-O> CLK > CcLk
_ I\ _
K B K A
B ,_.1 A
Step > y
D (Direction) /L ——

FIGURE 7-39 Synchronous counter implemented from the J, K equations.

related to the PRESENT states of D, B, and A. Using the appropriate looping, the
simplified logic expressions for each Jand K signal are obtained.

The final step is shown in Figure 7-39, where the two-bit synchronous counter
is implemented using the J, K expressions obtained from the K maps.

. List the six steps in the procedure for designing a synchronous counter.
. What information is contained in a J-K excitation table?
What information is contained in the circuit excitation table?

True or faise: The synchronous counter design procedure can be used for the
following sequence: 0010, 0011, 0100, 0111, 1010, 1110, 1111, and repeat.

BN e

7-1D SHIFT-REGISTER COUNTERS

In Section 5-18 we saw how to connect FFs in a shift-register arrangement to trans-
fer data left to right, or vice versa, one bit at a time (serially). Shift-register counters
use feedback, which means that the output of the last FF in the register is connected
back to the first FF in some way.

Ring Counter

The simplest shift-register counter is essentially a circulating shift register con-
nected so that the last FF shifts its value into the first FF. This arrangement is shown
in Figure 7-40 using D-type FFs (J-K flip-flops can also be used). The FFs are con-
nected so that information shifts from left to right and back around from Q, to Qs.
In most instances only a single 1 is in the register, and it is made to circulate around
the register as long as clock pulses are applied. For this reason it is called a ring
counter.

The waveforms, sequence table, and state diagram in Figure 7-40 show the var-
ious states of the FFs as pulses are applied, assuming a starting state of Qs = 1 and
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A
Ly
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(c)
(d)

FIGURE 7-40 (a) Four-bit ring counter; (b) waveforms; (¢) sequence table; (d) state
diagram.

Q= O = Qy = 0. After the first pulse, the 1 has shifted from Qs to Q, so that the
counter is in the 0100 state. The second pulse produces the 0010 state, and the third
pulse produces the 0001 state. On the fourth clock pulse, the 1 from Q, is trans-
ferred to Qs, resulting in the 1000 state, which is, of course, the initial state. Subse-
quent pulses cause the sequence to repeat.

This counter functions as a MOD-4 counter, since it has four distinct states be-
fore the sequence repeats. Although this circuit does not progress through the nor-
mal binary counting sequence, it is still a counter because each count corresponds
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to a unique set of FF states. Note that each FF output waveform has a frequency
equal to one-fourth of the clock frequency, since this is a MOD-4 ring counter.

Ring counters can be constructed for any desired MOD number; a MOD-N ring
counter uses N flip-flops connected in the arrangement of Figure 7-40. In general, a
ring counter will require more FFs than a binary counter for the same MOD num-
ber; for example, a MOD-8 ring counter requires eight FFs, while a MOD-8 binary
counter requires only three.

Despite the fact that it is less efficient in the use of FFs, a ring counter is still
useful because it can be decoded without the use of decoding gates. The decoding
signal for each state is obtained at the output of its corresponding FF. Compare the
FF waveforms of the ring counter with the decoding waveforms in Figure 7-27. In
some cases a ring counter might be a better choice than a binary counter with its as-
sociated decoding gates. This is especially true in applications where the counter is
being used to control the sequencing of operations in a system.

Starting a Ring Counter

To operate propetly, a ring counter must start off with only one FF in the 1 state and
all the others in the 0 state. Since the starting states of the FFs will be unpredictable
on power-up, the counter must be preset to the required starting state before clock
pulses are applied. One way to do this is to apply a momentary pulse to the asyn-
chronous PRE input of one of the FFs (e.g., Qs in Figure 7-40) and to the CIR input
of all other FFs. Another method is shown in Figure 7-41. On power-up, the capac-
itor will charge up relatively slowly toward + V.. The output of Schmitt-trigger IN-
VERTER 1 will stay HIGH, and the output of INVERTER 2 will remain LOW until the
capacitor voltage exceeds the positive-going threshold voltage (Vi) of the IN-
VERTER 1 input (about 1.7 V). This will hold the PRE input of Qs and the CIR in-
puts of Q,, Qy, and Q, in the LOW state long enough during power-up to ensure
that the counter starts at 1000.

Johnson Counter

The basic ring counter can be modified slightly to produce another type of shift-reg-
ister counter, which will have somewhat different properties. The Johnson or
twisted-ring counter is constructed exactly like a normal ring counter except that
the inverted output of the last FF is connected to the input of the first FF. A three-bit

+Vee

ensuring that the ring counter of
Figure 7-40 starts in the 1000

state on power-up.

1kQ
74ALS14

bo bo To PRE of Qg and CLR of
Q,. Q,, and Qg of Fig. 7-40

1000 pF I
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Johnson counter is shown in Figure 7-42. Note that the Q, output is connected back
to the D input of Q,. This means that the inverse of the level stored in Q, will be
transferred to Q, on the clock pulse.

The Johnson-counter operation is easy to analyze if we realize that on each pos-
itive clock-pulse transition, the level at Q, shifts into Q,, the level at Q; shifts into
Qy, and the inverse of the level at Q, shifts into Q,. Using these ideas and assuming
that all FFs are initially 0, the waveforms, sequence table, and state diagram of Fig-
ure 7-42 can be generated.

—D Q,—»—D Q,—»—D Qo
—> CLK > CLK > CLK
cLOCK Q, Q Qo
I o
(a)
1 2 3 4 5 6 7

(b)

CLOCK
pulse

©]
N

o
(=]

~—ocolo===ao00ol R
©cool-= 2000
®Noo A wN = O

(c)
(d)

m FIGURE 7-42 (a) MOD-6 Johnson counter; (b) waveform; (c) sequence table; (d) state
diagram.
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Examination of the waveforms and sequence table reveals the following impor-
tant points:

1. This counter has six distinct states: 000, 100, 110, 111, 011, and 001 before it re-
peats the sequence. Thus, it is a MOD-6 Johnson counter. Note that it does not
count in a normal binary sequence.

2. The waveform of each FF is a square wave (50 percent duty cycle) at one-sixth
the frequency of the clock. In addition, the FF waveforms are shifted by one
clock period with respect to each other.

The MOD number of a Johnson counter will always be equal to twice the num-
ber of FFs. For example, if we connect five FFs in the arrangement of Figure 7-42,
the result is a MOD-10 Johnson counter, where each FF output waveform is a
square wave at one-tenth the clock frequency. Thus, it is possible to construct a
MOD-N counter (where N is an even number) by connecting N/2 flip-flops in a
Johnson-counter arrangement.

Decoding a Johnson Counter

For a given MOD number, a Johnson counter requires only half the number of FFs
that a ring counter requires. However, a Johnson counter requires decoding gates,
whereas a ring counter does not. As in the binary counter, the Johnson counter uses
one logic gate to decode for each count, but each gate requires only two inputs, re-
gardless of the number of FFs in the counter. Figure 7-43 shows the decoding gates
for the six states of the Johnson counter of Figure 7-42.

Notice that each decoding gate has only two inputs, even though there are
three FFs in the counter. This is because for each count, two of the three FFs are in
a unique combination of states. For example, the combination Q, = Q, = 0 occurs
only once in the counting sequence, at the count of 0. Thus, AND gate 0 with inputs
0, and Q, can be used to decode for this count. This same characteristic is shared
by all of the other states in the sequence, as the reader can verify. In fact, for any
size Johnson counter, the decoding gates will have only two inputs.

Johnson counters represent a middle ground between ring counters and binary
counters. A Johnson counter requires fewer FFs than a ring counter but generally
more than a binary counter; it has more decoding circuitry than a ring counter but
less than a binary counter. Thus, it sometimes represents a logical choice for certain
applications.

__ Q, &— Q, Q, Q,|]Active gate
Q,Q, . 3 Q,Q S
o &

[« RN N e

- o aloo
o b W - O

FIGURE 7-43 Decoding logic for a MOD-6 Johnson counter.


Albustani
Rechteck


Section 7-15 / Part I Summary e 375

IC Shift-Register Counters

Very few ring counters or Johnson counters are available as ICs. The reason is that
it is relatively simple to take a shift-register IC and to wire it as either a ring counter

or

a Johnson counter. Some of the CMOS Johnson-counter ICs (74HC4017,

74HC4022) include the complete decoding circuitry on the same chip as the
counter.

Review Questions |

NN =

. Which shift-register counter requires the most FFs for a given MOD number?

Which shift-register counter requires the most decoding circuitry?

. How can a ring counter be converted to a Johnson counter?

True or false:
(@) The outputs of a ring counter are always square waves.

(b) The decoding circuitry for a Johnson counter is simpler than for a binary
counter.

(©) Ring and Johnson counters are synchronous counters.

. How many FFs are needed in a MOD-16 ring counter? How many are needed

in a MOD-16 Johnson counter?

PART I SUMMARY

1.

In asynchronous (ripple) counters, the clock signal is applied to the LSB FF, and
all other FFs are clocked by the output of the preceding FF.

. A counter’s MOD number is the number of stable states in its counting cycle; it

is also the maximum frequency-division ratio.

. The normal (maximum) MOD number of a counter is 2". One way to modify a

counter’s MOD number is to add circuitry that will cause it to recycle before it
reaches its normal last count.

Counters can be cascaded (chained together) to produce greater counting
ranges and frequency-division ratios.

. In a synchronous (parallel) counter all of the FFs are simultaneously clocked

from the input clock signal.

. The maximum clock frequency for an asynchronous counter, f,.., decreases as

the number of bits increases. For a synchronous counter, f,,, remains the same
regardless of the number of bits.

. A decade counter is any MOD-10 counter. A BCD counter is a decade counter

that sequences through the 10 BCD codes (0-9).

. A presettable counter can be loaded with any desired starting count.

. An up/down counter can be commanded to count up or count down.
10.
11.

Logic gates can be used to decode (detect) any or all states of a counter.
Asynchronous counters can produce glitches in decoding gates due to the
counter propagation delays. Synchronous counters are less likely to cause de-
coding glitches. Strobing is a technique for eliminating the effects of decoding
glitches.
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12. Synchronous counters with arbitrary counting sequences can be implemented
by following a standard design procedure.

13. A ring counter is actually an N-bit shift register that continuously recirculates a
single 1, thereby acting as a MOD-N counter. A Johnson counter is a modified
ring counter that operates as a MOD-2N counter.

PART I IMPORTANT TERMS

asynchronous (ripple) up/down counters sequential circuit design
counter presettable counters J-K excitation table
MOD number parallel load circuit excitation table
decade counter multistage counters circulating shift register
BCD counter decoding ring counter
up counter decoding glitches Johnson counter
down counter strobing
synchronous (parallel) cascading
counters

PART II
7-16  COUNTER APPLICATIONS: FREQUENCY COUNTER

There are numerous applications for the many types of counters we have been dis-
cussing. In this section and the next we will look at two representative applications
that illustrate the uses of counters in digital systems.

A frequency counter is a circuit that can measure and display the frequency of
a signal. One of the most straightforward methods for constructing a frequency counter
is shown in Figure 7-44(a) in simplified form. It contains a counter with its associated

Il f : |

z CLEAR | |
‘ Unknown I |
‘Z—C—‘_ frequency, f, SAMPLE
Counter pulses
—— SAMPLE I |
pulses

%V CLEAR _I—I

Decoder/display :
!
|

- z | AAAAA

(a) | [ |

to RS t

| |
I |
| !
I 1
| ]
! |
| |
! |
! |
| 1

J

g
Sampling
interval

(b}

FIGURE 7-44 Basic frequency-counter method.
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decoder/display circuitry and an AND gate. The AND gate inputs include the pulses
with unknown frequency, f,, and a SAMPLE pulse that controls how long these pulses
are allowed to pass through the AND gate into the counter. The counter is usually
made up of cascaded BCD counters (Figure 7-32), and the decoder/display unit con-
verts the BCD outputs into a decimal display for easy monitoring.

The waveforms in Figure 7-44(b) show that a CLEAR pulse is applied to the
counter at # to start the counter at 0. Prior to #; the SAMPLE pulse waveform is
LOW, and so the AND output, Z, will be LOW and the counter will not be count-
ing. The SAMPLE pulse goes HIGH from t; to &; this is called the sampling in-
terval. During this sampling interval the unknown frequency pulses will pass
through the AND gate and will be counted by the counter. After #, the AND out-
put returns LOW and the counter stops counting. Thus, the counter will have
counted the number of pulses that occurred during the sampling interval, and the
resulting contents of the counter are a direct measure of the frequency of the pulse
waveform.

The unknown frequency is 3792 pulses per second (pps). The counter is cleared
to the 0 state prior to ¢. Determine the counter reading after a sampling interval of
(@ 1s, () 0.1s, and (c) 10 ms.

Solution

(a) Within a sampling interval of 1 s there will be 3792 pulses entering the counter,
and so after t, the contents of the counter will read 3792.

(b) With a 0.1-s sampling interval the number of pulses passing through the AND
gate into the counter will be 3792 pulses/s X 0.1 s = 379.2. This means that ei-
ther 379 or 380 pulses will be counted, depending on what part of a pulse cy-
cle 4 occurs in.

(o) With a sampling interval of 10 ms = 0.01 s, the counter will read either 37 or 38.

The accuracy of this method depends almost entirely on the duration of the
sampling interval, which must be very accurately controlled. A commonly used
method for obtaining very accurate sample pulses is shown in Figure 7-45. A crys-
tal-controlled oscillator is used to generate a very accurate 100-kHz waveform,
which is shaped into square pulses and fed to a series of decade counters that are
being used to divide this 100-kHz frequency successively by 10. The frequencies at
the outputs of each decade counter are as accurate (percentagewise) as the crystal
frequency. These decade counters are usually binary or Johnson counters.

The rotary switch is used to select one of the decade-counter output frequen-
cies to be fed to a single FF to be divided by 2. For example, in switch position
1 the 1-Hz pulses are fed to flip-flop Q, which is acting as a toggle FF so that its
output will be a square wave with a period of 7= 2 s and a pulse duration of
I, = T/2 = 1 s. This pulse duration is the desired 1-s sampling interval. In position
2 the sampling interval would be 0.1 s, and so on, for the other positions.
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100 kHz 100 kHz
Crystal IV\I | JUIL | pecade {10 kHz| Decade | 1 kHz |Decade| 100 Hz | Decade {10 Hz | Decade | 1 Hz
ry”s —»! Pulse »-{ counter » counter - counter counter counter -
oscillator shaper DIV10 DIV10 DIV10 DIV10 DIV10
10 ms
1ms 0.1s
100 ps j
d 4
10 us . 5
6y Ny 2
To SAMPLE ¥ s
AND gate 4_pu|sesJ_|___l_.__ Q Jl—e 1 1
of Figs. 7-44 T/2
and 7-46 v CLK O Sample interval
' T _ select switch
Q Kl—e 1

FIGURE 7-45 Method for obtaining accurate sampling intervals for a frequency counter.

EXAMPLI ~ Assume that the counter in Figure 7-44 is made up of three cascaded BCD counters
7-19 and their associated displays. If the unknown input frequency is between 1 kpps
and 9.99 kpps, what is the best setting for the switch position in Figure 7-45?

Solution

With three BCD counters the total capacity of the counter is 999. A 9.99-kpps
frequency would produce a count of 999 if a 0.1-s sample interval were used.
Thus, in order to use the full capacity of the counter, the switch should be set to
position 2. If a 1-s sampling interval were used, the counter capacity would always
be exceeded for frequencies in the specified range. If a shorter sample interval
were used, the counter would count only between 1 and 99; this would give a
reading to only two significant figures and would be a waste of the counter’s

capacity.

Complete Frequency Counter

We will now look at a more complete frequency-counter circuit in Figure 7-46(a).
The circuit now contains a one-shot and a J-K flip-flop operating in the toggle
mode, and the AND gate has three inputs, one of which is the FF output X. The
SAMPLE pulses are connected to the AND gate and also to the CLK input of the FF.
These SAMPLE pulses would be generated from a circuit such as that in Figure 7-45.
The following step-by-step description refers to the waveforms in Figure 7-46(b).

1. Assume that flip-flop X is in the O state (it has toggled to 0 on the falling edge of
the previous sample pulse).
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Unknown frequency input

"CLEAR Illlllll,lllllll

z( ——o
COUNTER - l [ J | L

SAMPLE pulses (from Fig. 7-45)
Y

Decoder/display = |

Q X Jel
0S 14 cLKk<O—
t,= 100 ns X Ko

R
A G (@)

Input
pulses

1 — ———

SAMPLE I |
pulses 0 I I I
t ty ty ty ts tg ty tg t

9

| |
1 T T
i |
X | |
—_— | r
0 Clears | | | |
| |
1 counterl Sample ! | Sample|
0s I interval ! I interval !
output Faipl —»!
Q I | | I
0 T T | !
| |
| l ! | | !
AND 1 | I 1 | | |
BRI\, R
Z 0 i | | ; | |
. I ! ) I |
Counter Counter Counter stops, Counter Counter ——etc.———
cleared is display shows cleared is
counting frequency reading counting

FIGURE 7-46 Frequency counter.

2. This LOW from X is fed to the AND gate, disabling its output, so that no pulses
are fed to the counter even when the first SAMPLE pulse occurs between ¢, and
b.

3. At t, the NGT of the first SAMPLE pulse toggles flip-flop X to the 1 state (note that
J= K= 1. This positive transition at X triggers the OS, which generates a 100-
ns pulse to clear the counter. The counter now displays zero.

4. At 13 the second SAMPLE pulse enables the AND gate (since X is now 1) and al-
lows the unknown frequency into the counter to be counted until #;.
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5. At t, the SAMPLE pulse returns LOW and toggles X LOW, disabling the AND gate.
The counter stops counting.

6. Between t; and #; the counter holds and displays the count that it had reached at
t;. Note that the third SAMPLE pulse does not enable the AND gate, because flip-
flop X is LOW.

7. At f; the NGT of the SAMPLE pulse toggles X HIGH, and the operation follows
the same sequence that began at #,.

This frequency counter, then, goes through a repetitive sequence of clearing to
0, counting, holding for display, clearing to 0, counting, and so on. For example,
let's assume that the counter has three BCD stages and a three-digit display. If we
use a sample interval of 1 s and the unknown frequency is 237 pps, the counter and
the display will go through the following sequence over and over:

B Clear to 0 and display 0 for 1 s [#, to % in Figure 7-46(b)l.

W Starting at 0, count unknown frequency pulses during the 1-s sample interval (¢
. to ty); the count will stop at 237.

W Hold and display the count of 237 for 2 s (# to #).

Since the display is connected directly to the counter outputs, the display will
show the clearing and counting action of the counter. This makes it very difficult to
read the display to determine the unknown frequency except at very slow sample
intervals. This problem can be solved by inserting a buffer register between the
counter and the decoder/display unit. We will consider this feature in Problem 7-43.

1. What is the best sample interval setting to use if the pulse counter has four
BCD stages and the input frequency is between 2 and 8 Mpps?

2. Describe the sequence of operations of the complete frequency counter of
Figure 7-46.

3. Why would it be unwise to use ring counters instead of Johnson counters for
the decade counters in Figure 7-45?

7-17 COUNTER APPLICATIONS: DIGITAL CLOCK

One of the most common applications of counters is the digital clock—a time clock
that displays the time of day in hours, minutes, and sometimes seconds. In order to
construct an accurate digital clock, a very closely controlled basic clock frequency is
required. For battery-operated digital clocks (or watches) the basic frequency is nor-
mally obtained from a quartz-crystal oscillator. Digital clocks operated from the ac
power line can use the 60-Hz power frequency as the basic clock frequency. In ei-
ther case, the basic frequency must be divided down to a frequency of 1 Hz or 1
pulse per second (pps). Figure 7-47 shows the basic block diagram for a digital
clock operating from 60 Hz.

The 60-Hz signal is sent through a Schmitt-trigger circuit to produce square
pulses at the rate of 60 pps. This 60-pps waveform is fed into a MOD-60 counter
that is used to divide the 60 pps down to 1 pps. The 1-pps signal is fed into the
SECONDS section, which is used to count and display seconds from 0 through 59.
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FIGURE 7-47

Block diagram for a digital clock.

The BCD counter advances one count per second. After 9 seconds the BCD counter
recycles to 0, which triggers the MOD-6 counter and causes it to advance one count.
This continues for 59 s, at which point the MOD-6 counter is at the 101 (5) count and
the BCD counter is at 1001 (9), so that the display reads 59 s. The next pulse recy-
cles the BCD counter to 0, which in turn recycles the MOD-6 counter to 0 (remem-
ber, the MOD-6 counts from 0 through 5).

The output of the MOD-6 counter in the SECONDS section has a frequency of 1
pulse per minute (the MOD-6 recycles every 60 s). This signal is fed to the MINUTES
section, which counts and displays minutes from 0 through 59. The MINUTES sec-
tion is identical to the SECONDS section and operates in exactly the same manner.

The output of the MOD-6 counter in the MINUTES section has a frequency of 1
pulse per hour (the MOD-6 recycles every 60 min). This signal is fed to the HOURS
section, which counts and displays hours from 1 through 12. This HOURS section is
different from the SECONDS and MINUTES sections in that it never goes to the 0
state. The circuitry in this section is sufficiently unusual to warrant a closer investi-
gation.

Figure 7-48 shows the detailed circuitry contained in the HOURS section. It in-
cludes a BCD counter to count units of hours, and a single FF (MOD-2) to count
tens of hours. The BCD counter is a 74HC192, which operates exactly like the
74HC193 that we studied earlier except that it counts only between 0000 and 1001.
In other words, the 74HC192 can either count up in BCD fashion (i.e., 0 to 9, recy-
cling to 0) or count down in BCD fashion (i.e., 9 to 0, recycling to 9). Here it is used
to count up in response to the 1-pulse/hour signal coming from the MINUTES sec-
tion. The INVERTER on the CP; input is needed because the 74HC192 responds to
PGTs, and we want it to respond to the NGT that occurs when the MINUTES section
recycles back to 0.

The incoming pulses advance the BCD counter once per hour. For example, at
7 o'clock this counter will be at 0111, and its decoder/display circuitry will display
the numeral 7. At the same time, X will be LOW and its display will show a 0. Thus,
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FIGURE 7-48 Detailed circuitry for the HOURS section.

the two displays will show “07.” When the BCD counter is in the 1001 (9) state and
the next input pulse occurs, it will recycle back to 0000. The NGT at Q; will toggle
flip-flop X from O to 1. This produces a numeral 1 on the X display and a numeral
0 on the BCD display so that the combined displays show “10” for 10 o’clock.

The next two pulses advance the BCD counter so that “11” and “12” are dis-
played at 11 o’clock and 12 o'clock, respectively. The next pulse advances the BCD
counter to 0011 (3). In this state, the counter’s Q;, and Q, outputs are both HIGH,
and X is still HIGH. Thus, the NAND gate output goes LOW and activates the CLR
of flip-flop X and the PL input of the 74HC192. This clears X to 0 and presets the
BCD counter to 0001. The result is a display of “01” for 1 o’clock. Several of the end-
of-chapter problems will provide more details on the digital clock circuit.

1. Name the basic blocks that make up a digital clock circuit.
2. Why is an INVERTER needed in Figure 7-48?

Review Questlons
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7-18 INTEGRATED-CIRCUIT REGISTERS

The various types of registers can be classified according to the manner in which
data can be entered into the register for storage and the manner in which data are
outputted from the register. The various classifications are listed below.

1. Parallel in/parallel out ’

2. Serial in/serial out
3. Parallel in/serial out

4. Serial in/parallel out

Each of these types and several variations are available in IC form so that a logic
designer can usually find exactly what is required for a given application. In the fol-
lowing sections we will examine a representative IC from each of the above categories.

7-19 PARALLEL IN/PARALLEL OUT—THE 74ALS174/74HC174

Figure 7-49(a) shows the logic diagram for the 74ALS174 (also the 74HC174), a six-
bit register that has parallel inputs D5 through D, and parallel outputs Qs through
Q. Parallel data are loaded into the register on the PGT of the clock input CP. A

MR CP Ds D, Ds D, D, Do

v

& o 8- &

l— D Q I— D Qb |— D Qb l— D Q |— D Q D ah
cP cP CcP CcP cP cP
> CLR >~ CLR >~ CLR >~ CLR >~ CLR > CLR

O
—O
—O
—O
—O
L 4

Qs Qs Q3 Q, Q Qo
(a)

PYyYyry

D5 D4 D3 D2 D1 Do

CP>—p 74ALS174

MR Qs Q4 Q3 Q; Q1 Qo

T

FIGURE 7-49 (a) Circuit diagram of the 74ALS174; (b) logic symbol. (Courtesy of Fairchild,
a Schlumberger company)
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master reset input MR can be used to reset asynchronously all of the register FFs to
0. The logic symbol for the 74ALS174 is shown in Figure 7-49(b). This symbol is
used in circuit diagrams to represent the circuitry of Figure 7-49(a).

The 74ALS174 is normally used for synchronous parallel data transfer whereby
the logic levels present at the D inputs are transferred to the corresponding Q out-
puts when a PGT occurs at the clock CP. This IC, however, can be wired for serial
data transfer, as the following examples will show.

Show how to connect the 74ALS174 so that it operates as a serial shift register with
data shifting on each PGT of CP as follows: Ds > D, -» Dy~ D, — D, = D,. In
other words, serial data will enter at Ds and will output at Q.

Solution

Looking at Figure 7-49(a), we can see that to connect the six FFs as a serial shift
register, we have to connect the Q output of one to the D input of the next so that
data is transferred in the required manner. Figure 7-50 shows how this is
accomplished. Note that data shifts left to right, with input data applied at Ds and
output data appearing at Q.

FIGURE 7-50 Example 7-20. The
74ALS174 wired as a shift register.

Serial
input
Y
Dy D, D3 D, Dy Dy
CP—> 74ALS174
MR—OQ o, Q, 0; Q, Q; Q
l Serial
l W output

How would you connect two 74ALS174s to operate as a 12-bit shift register?

Solution

Connect a second 74ALS174 IC as a shift register, and connect Q, from the first IC
to Ds of the second IC. Also connect the CP inputs of both ICs, so that they will be
clocked from the same signal.
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FIGURE 7-51 Logic diagram for one of four 64-bit shift registers on a 4731B. (Courtesy of
Fairchild, a Schlumberger company)

7-20 SERIAL IN/SERIAL OUT—THE 4731B

The 4731B is a CMOS gquad 64-bit serial in/serial out shift register. It con-
tains four identical 64-bit shift registers on one chip. Figure 7-51 shows the logic
diagram for one of the 64-bit registers. It has a serial input, Ds, a clock input
CP that responds to NGTs, and a serial output from the last FF, Qs;. This is the
only output that is externally accessible. Note that this output goes through a buf-
Jer circuit (triangle symbol with no inversion bubble). A buffer does not change
the signal’s logic level; it is used to provide a greater output-current capability
than normal. Also note that there is no means for parallel data entry into the reg-

ister FFs.
EXAMPLE A shift register is often used as a way to delay a digital signal by an integral
7-21 number of clock cycles. The digital signal is applied to the shift register’s serial

input and is shifted through the shift register by successive clock pulses until it
reaches the end of the shift register, where it appears as the output signal. This is
illustrated in Figure 7-52 using one of the 64-bit registers on the 4731B chip.

Let’s assume that the serial input Ds has been LOW for a long time as clock
pulses have been applied, so that the register is filled with all 0s and Qg3 starts out
LOW as shown. Then Ds goes HIGH just prior to #. The NGTs at CP will cause
this HIGH to shift into and through the shift register, making each FF go HIGH in
succession until finally at %3 the Qg3 output goes HIGH. The net effect, then, is
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3

T— Qg3 goes HIGH

approximately 64
clock cycles after Dg.

FIGURE 7-52 Waveforms showing how one of the 4731B shift registers can be used to
delay a digital signal. ’

that the change in the D signal is not felt at the Qg3 output until approximately 64
clock cycles later.

This method for delaying the effect of a digital signal is common in the digital
communications field. For instance, the digital signal might be the digitized
version of an audio signal that is to be delayed before it is transmitted.

7-21 PARALLEL IN/SERIAL OUT—THE 74ALS165/74HC165

The logic symbol for the 74HC165 is shown in Figure 7-53(a). This IC is an 8-bit
parallel in/serial out register. It actually has serial data entry via Ds and asynchro-
nous parallel data entry via P, through P,. The register contains eight FFs—Q,
through Q-—internally connected as a shift register, but the only accessible FF out-
puts are Q- and Q. CPis the clock input used for the shifting operation. The clock
inhibit input, CP INH is used to inhibit the effect of the CP input. The shift/load in-
put, SH/LD, controls which operation is taking place—shifting or parallel loading.
The function table in Figure 7-53(b) shows how the various input combinations de-
termine what operation, if any, is being performed.
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FIGURE 7-53 (a) LOglC Symbol 0 P1 PZ P3 P4 P5 Pe P7
for the 74HC165 parallel in/serial
out register. (b) Function table.
DS —'—>
CP —
P 74HC165
CP INH —odf
SH/LD ———

L .

Q
(a)
Function Table
Inputs
SHALD CP CPINH|{ Operation H = high level
L = low level
L X X Parallel load X = immaterial
H H X No change £ =PGT
H X H No change
H £y L Shifting
H L £y Shifting
(b)

Examine the 74HC165 function table and determine (a) the conditions necessary to
load the register with parallel data; (b) the conditions necessary for the shifting
operation.

Solution

(2) The first entry in the table shows that the SH/LD input has to be LOW for the
parallel load operation. When this input is LOW, the data present at the P inputs
are asynchronously loaded into the register FFs independent of the CP and the
CP INH inputs. Of course, only the outputs from the last FF are externally avail-
able.

(b) The shifting operation cannot take place unless the SH/LD input is HIGH and a
PGT occurs at CP while CP INH is LOW (fourth table entry). A HIGH at CP INH
will inhibit the effect of any clock pulses. Note that the roles of the CP and CP
INH inputs can be reversed as indicated by the last table entry. This is because
these two signals are ORed together inside the IC.

If we connect a 74HC165 so that Q- is connected to Ds, and we parallel load it
with all Os, what signal will appear at Q, when a 200-kHz signal is applied to CP
while CP INH is LOW?
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Solution

By connecting Q- to Ds, we have constructed an 8-bit Johnson counter. From our
earlier work, we know that an 8-bit Johnson counter will produce a square wave
at a frequency that is 1/16 of the clock frequency, in this case, 12.5 kHz.

7-22 SERIAL IN/PARALLEL OUT—THE 74ALS164/74HC164

The logic diagram for the 74ALS164 is shown in Figure 7-54(a). It is an eight-bit
serial in/parallel out shift register with each FF output externally accessible. In-
stead of a single serial input, an AND gate combines inputs A and B to produce the
serial input to flip-flop Q.

The shift operation occurs on the PGTs of the clock input CP. The MR input
provides asynchronous resetting of all FFs on a LOW level.

The logic symbol for the 74A1S164 is shown in Figure 7-55(a). Note that the &
symbol is used inside the block to indicate that the 4 and B inputs are ANDed in-
side the IC and the result is applied to the D input of Q.

B-bit
shift register
74AL5164
A
4 > a D Q D Q D Q D Q D Q D Q D Q
B
cp cp cp cp cp cp cp
CPes Co Co > o Co > ¢p Co > ¢p
cp @) NS o} o) @) 0 @) T
MR Qo Q Q, Qs Q. Qs Qg Q,
(a)
A-—)—E
B —»— 74ALS164
CP ——

AREREEAAY!

FIGURE 7-54 (a) Logic diagram for the 74ALS164; (b) logic symbol. (Courtesy of Fairchild,
a Schlumberger company)
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Assume that the initial contents of the 74ALS164 register in Figure 7-55(a) are
00000000. Determine the sequence of states as clock pulses are applied.

FIGURE 7-55 Example 7-24. A
1 o——(g

nnn <P

74ALS164

Sy

Q, Q; Q, Q3 Q Q5 Qg Qy

Input
pulse
“number Qp Q0 Q0 Q3 Q. Q5 Qg O
0 -0 0 0 0 0 0 0 0
1 : 1 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0
3 1 1 1 0 0 0 0 0
4 1 1 1 1 0 0 0 0
- Recycles
5 1 1 1 1 1 0 0 0
6 1 1 1 1 1 1 0 0
7 1 1 1 1 1 1 1 0
s (0 1 1 1 1 1 1 1)
4
Temporary
state (b)
Solution

The correct sequence is given in Figure 7-55(b). With 4 = B = 1, the serial input
is 1, so that 1s will shift into the register on each PGT of CP. Since ( is initially at
0, the MR input is inactive.

On the eighth pulse, the register tries to go to the 11111111 state as the 1 from
Qs shifts into (. This state occurs @nly momentarily because Q; = 1 produces a
LOW at MR that immediately resets the register back to 00000000. The sequence is
then repeated on the next eight clock pulses.

The following is a list of some other register ICs that are variations on those al-
ready presented:

B 74194/ALS194/HC194. This is a four-bit bidirectional universal shift-register 1C
which can perform shift-left, shift-right, parallel in, and parallel out operations.
These operations are selected by a two-bit mode-select code applied as inputs to
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the device. Problem 7-56 will provide you with a chance to find out more about
this versatile chip.

B 74373/ALS373/HC373/HCT373. This is an eight-bit (octal) parallel in/parallel out
register containing eight D latches with tristate outputs. A tristate output is a spe-
cial type of logic circuit output that allows device outputs to be safely tied to-
gether. We will cover the characteristics of tristate devices such as the 74373 in
the next chapter.

W 74374/ALS374/HC374/HCT374. This is an eight-bit (octal) parallel in/parallel out
register containing eight edge-triggered D flip-flops with tristate outputs.

The IC registers that have been presented here are representative of the various
types that are commercially available. Although there are many variations on these
basic registers, most of them should now be relatively easy to understand from the
manufacturers’ data sheets.

We will present several register applications in the end-of-chapter problems and
in the material covered in subsequent chapters.

1. What kind of register can have a complete binary number loaded into it in one
operation, and then have it shifted out one bit at a time?

2. True or false: A serial in/parallel out register can have all of its bits displayed
at one time.

3. What type of register can have data entered into it only one bit at a time, but
has all data bits available as outputs?

4. In what type of register do we have access only to one FF output?
. How does the parallel data entry differ for the 74165 and the 74174?
6. How does the CP INH input of the 74ALS165 work?

N

7-23 1EEE/ANSI REGISTER SYMBOLS

We will present two examples of the IEEE/ANSI symbols for register ICs. First, let’s
consider the 74174 parallel in/parallel out IC whose internal logic and traditional
logic symbol was shown in Figure 7-49. The IEEE/ANSI symbol for the 74174 is
given in Figure 7-56(a). Its outline consists of the notched common-control block
and the six narrow rectangles representing the six FFs.

The common-control block has the inputs that are common to all of the ele-
ments in the IC; in this case, the’ MR and CP inputs are common to the six FFs Q,
through Qs that make up the register. The internal label for the MR input is shown
as an R to indicate that its function is to reset each FF. The internal label for the CP
input is C1, which tells us that this input controls the entry of data into any storage
element that has a prefix of 1 in its input label. Each FF’s D input has an internal la-
bel of 1D (shown only for Q,, but assumed the same for each FF). The “1” in Cl
and 1D establishes the dependency of the flip-flop D inputs on the common clock
input CP.

The IEEE/ANSI symbol for the 74164 serial in/parallel out shift register is pre-
sented in Figure 7-56(b). Its outline consists of the common-control block and the
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74174 74164

MR —DN R — . SRG 8

cP P C1 cp > Cc1/-
] [ [
Dy —— 1D — Q, /;—‘ & [ 1D — Q,
D; —— —— Q, — Q,
D, —— — Q, — Q,
Dy — — Qs = Qs
D4 —— q, — Q,
Dy —— — Q5 —— Q;
(a) Qs
L q,
(b)

FIGURE 7-56 IEEE/ANSI symbols for (a) the 74174 parallel in/parallel out register and
(b) the 74164 serial in/parallel out shift register.

eight FFs that make up the register. The notation SRG 8 identifies this IC as being an
eight-bit shift register.

The CP input has the internal label C1/—. The slash (/) is used to separate the
two functions C1 and — performed by this input. The C1 indicates that CP controls
the data entry into flip-flop Q, since Q, has the input label 1D. Note that the data bit
entered into Q, is indicated as the AND combination of inputs A and B. Also note
that since there are no external data inputs to Q, through Q,, CP does not control
data entry into these FFs. The — denotes that the active transition of CP will pro-
duce the shift-right operation (from Q, toward Q).

LA TAVRTGEIR T . 1. What does the slash (/) mean when it appears in an input label?

2. What notation would be used to describe the function performed by one of
the registers on the 4731B IC of Figure 7-51?

7-24 TROUBLESHOOTING

Flip-flops, counters, and registers are the major components in sequential logic
systems. A sequential logic system, because of its storage devices, has the charac-
teristic that its outputs and sequence of operations depend on both the present in-
puts and the inputs that occurred earlier. Even though sequential logic systems are
generally more complex than combinational logic systems, the essential procedures
for troubleshooting apply equally well to both types of systems. Sequential systems
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FIGURE 7-57 Example 7-25.

Figure 7-57(a) shows a 7415293 wired as a MOD-10 counter. A technician tests the

Chapter 7 / Counters and Registers

suffer from the same types of failures (open circuits, shorts, internal IC faults, and
the like) as do combinational systems.

Many of the same steps used to isolate faults in a combinational system can
be applied to sequential systems. One of the most effective troubleshooting tech-
niques begins with the troubleshooter observing the system operation and, by
analytical reasoning, determining the possible causes of the system malfunction.
Then he or she uses available test instruments to isolate the exact fault. The
following examples will show the kinds of analytical reasoning that should be
the initial step in troubleshooting sequential systems. After studying these examples,
you should be ready to tackle the troubleshooting problems at the end of the chapter.

counter operation by applying a 1-kHz clock signal and observing the Q outputs
with an oscilloscope. The displayed waveforms are shown in Figure 7-57(b).
Determine the possible causes for the incorrect circuit behavior.

cp, CTR DIV10
—Op
CLOCK —
Hplipgh ; CPyo + 7415293
MR, MR, Q; Q, Q; Qp

Ry an

(a)

(b)
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Solution

The waveforms show that Q, is toggling in response to the NGTs of the clock, but
all other FFs are stuck in the LOW state. Several possible faults could produce this
operation.

1. The Q, output is internally or externally shorted to ground. Referring to the
74LS293 diagram in Figure 7-8(a), we can see that this would prevent Q, and
Qs from toggling, since Q, is the clock signal for Q, and Q, is the clock signal

for Qs.
2. The connection from Q, to CP; is open, so that Q; receives no clock signal.

3. There is an internal fault in the IC that prevents Q, from toggling.
4. The MR, input is internally shorted to ground, forcing Q, = 0.

After analyzing the situation described in Example 7-25, the technician proceeds to
isolate the fault. He performs ohmmeter checks and verifies that Q, is not shorted
ta ground and that Q, is connected to CP;. This eliminates the first two possible
faults. Concluding that the IC is bad, he replaces it. To his surprise, the circuit
operation exhibits the same symptoms. Scratching his head, he decides to take a
closer look at the FF waveforms by displaying them using a 10-ns/cm time scale.
On this scale he can see a very narrow glitch occurring on the @, signal at the
time when Q, makes a NGT (see Figure 7-58). What is the probable fault?

Solulion

When the counter is operating correctly, there should be a glitch at Q; when the
counter goes to the 1010 (10) state, at which point the HIGHs at Qs and Q, cause
the MR inputs to clear the count back to 0000. The waveforms in Figure 7-58,
however, do not show Qs HIGH when the glitch at Q; occurs. The most probable
fault is an open connection at MR,, since this would be interpreted as a constant
logic HIGH by the TTL integrated circuit. Thus, as soon as Q; goes HIGH, the MR
inputs are both HIGH and the counter resets to 0000.

FIGURE 7-58 Example 7-26.
CLOCK
B j_
> N
0
> |
10
ns
Q
20
Qs
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A technician tests the frequency counter of Figure 7-46 for various settings of the
sample interval and for different unknown input frequencies. In all cases she finds
that the displayed frequency is exactly twice what it should be. What is the
probable cause of the malfunction?

Solution

Referring to Figure 7-46, we see that the unknown frequency is allowed through
the AND gate into the counter during the interval # to #; while SAMPLE and X are
both HIGH. If the middle input to the AND gate were open, it would act like a
permanent HIGH (assuming TTL devices). This would allow the unknown
frequency pulses through the gate while X is HIGH during the interval & to .
This is twice the normal interval, and so the counter will count to twice the normal
value.

A technician wires up the digital clock of Figures 7-47 and 7-48. He observes that
the SECONDS section is counting properly. In order to test quickly the operation
of the MINUTES and HOURS sections, he bypasses the MOD-60 counter so that
the counters will be pulsed at a rate that is 60 times faster than normal. He
observes that the MINUTES section is working correctly, but the HOURS section
counts and displays in the manner shown in Table 7-7. What is the probable cause
of this incorrect sequence?

Solution

Since the problem is in the HOURS section, we need to refer to Figure 7-48. The
sequence above is correct except that the tens digit is incremented from 0 to 1
when the units digit goes from 7 to 8 instead of when it goes from 9 to 0. This
operation would occur if the CLK input of flip-flop X were mistakenly connected
to Q, rather than Q; of the BCD counter. If this is the case, then when the BCD
counter increments from 7 to 8, its Q, flip-flop makes a NGT that will toggle flip-
flop X earlier than expected.

- _

|

recycle and repeat
N

=R R = = O 00 O 0 O ©
N = O N0 O N &N WV W N =
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7-2D3 PROGRAMMING PLDs AS COUNTER CIRCUITS
USING BOOLEAN EQUATIONS

In Chapter 5 we introduced the concept of flip-flops and counter circuits. We also
saw that counter circuits can be implemented using a GAL 16V8. It has probably oc-
curred to you that a set of flip-flops must be built into this PLD. At this time we need
to start to look inside this PLD to understand how it works. We will add more and
more details later as the underlying concepts are explained.

Figure 7-59 shows the general architecture of a GAL 16V8. The input pins can
be selectively connected to the inputs of AND gates. The AND gate outputs are
ORed together to create a SOP (sum of products) expression. This OR output is con-
nected to the D input of a clocked D flip-flop. Either the OR gate output or the Q
output of this flip-flop can be connected to the GAL 16V8 output pin. If a combina-
tional logic circuit is being implemented, the OR output will be connected to the
output pin. When a clocked, sequential circuit such as a counter is being imple-
mented, the flip-flop output will be connected to the output pin.

We have used the State Transition input method of CUPL to define a counter
in Chapter 5. In Section 7-14 it was shown that Boolean equations could be writ-
ten to define the inputs to J-K flip-flops such that any given count sequence could
be generated. Similar equations can be written for D inputs.

There must be some way to let CUPL know whether we want the output of the
OR gate or the Q output of the flip-flop to be connected to the output pin. The way
Logical Devices solved this problem in the CUPL language was to provide extensions
for variables. Let’s assume that the output pin is named Q4. If an equation is written
for Q4.D, the CUPL compiler interprets this as the D input of the flip-flop connected
to the Q4 pin. By writing an equation with the .D extension, we cause CUPL to pro-
gram the device so that the flip-flop’s output is connected to the PLD output pin.

Designing counter circuits using D flip-flops is even easier that using J-K flip-
flops. The first three steps of synchronous counter design (see Section 7-14) are
identical. After you have set up a present state—next state table, think of it as a set of
truth tables (one per FF) specifying the next state of each flip-flop based on the pres-
ent state of all of the Q outputs. Recall that the next state of a D flip-flop’s Q output
is simply equal to the present state of its D input. We can skip step 4 of the syn-
chronous design process and simply design the logic circuits that will be connected
to the D input of each flip-flop.

FIGURE 7-59 General

architecture of a GAL PLD. [, | o)
> N S
—O Out
Programmable AND B o D utput
INPU.T gates [ R
connections > ~> Q
'
——
A
CLK

Feedback

Design a 3-bit MOD-6 Johnson counter (Figure 7-42) using a GAL 16V8. Assure
that all unused states will progress into the 000 state so that it will “self-start.” The
present state—next state table is shown in Table 7-8.
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TABLE 7-8 A present state-next state table for a Johnson counter.

PRESENT STATE NEXT STATE

Clock Pulse Q2 Q1 QO Q2 Ql Qo
Q2D QLD 'QU.D
0 0 0 0 1 0 0
1 1 0 0 1 1 0 m Q0.D :;nds for 2
2 1 1 0 1 1 1 i3 the g‘;’;“m 0?0 681&.
3 1 1 1 0 1 1
4 0 1 1 0 0 1
5 0 0 1 0 0 0
Unused 0 1 0 0 0 0
State
Unused 1 0 1 0 0 0
State
Solution

Notice that in this table, the next state of QO is the same as Q0.D, the D input of
QO, because QO will take on the logic level at D on the mext clock pulse. The
same is true for Q7 and Q2. Using this, we can write the unsimplified SOP
expressions for each D input in terms of the present states of the flip-flops:

02D =102& 101 & 1Q0# Q2 & Q1 & 1Q0 # Q2 & QI & !Q0;
Q1D = Q2& 01 & !1Q0# Q2& QI & 1Q0; # 02 & QI & QU;
Q0D = 02& Q1&!1Q0# Q2& Q1 & Q0 #102& Q1 & QO;

Another Method

There are other ways that CUPL can be used to create the same circuit. The Q out-
puts can be grouped and named using the field statement as we did in Chapter 6.
Let’s use the field name twisted to represent a set of three FF outputs. (Recall that a
Johnson counter is also called a twisted ring counter). The statement twisted.D rep-
resents the set of D inputs to each of the three flip-flops. At any time between two
active clock edges, the value of twisted is the current value of the Q outputs. The
value we want to place on the D inputs is next state’s value. The hardware descrip-
tion in Figure 7-60 is stating that the D inputs should be:

100, (4) if the present state of twisted is 000, (0)
OR 110, (6) if the present state of twisted is 100, (4)
OR 111, (D if the present state of twisted is 110, (6)

and so on.

In order to accomplish this evaluation of the current state, the equality opera-
tor (%) is used. This operator checks for bit equality between a set of variables (like
twisted) and a binary constant. As you can see in the figure, the constant can be ex-
pressed in binary, decimal, octal, or hexadecimal. The value of the logic expression
that results from this comparison is TRUE when they are equal or FALSE if any bit is
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FIGURE 7-60 The CUPL file for Name Johnson.pld ; Designer N.S.Widmer ;
a MOD-6 Johnson counter using  Partno 1234567 Company Purdue University;
field directive and equality Date June 2 ; Assembly Tocci Text
operator (). Revision 02 ; Location Chapter 7 ;
Device G16v8a ; Format j ;
/* Mod 6 Johnson Counter */
/* INPUTS */ pin1 = clock;
/* OUTPUTS  */ pin [13..15] = [Q2..0];
/* Hardware Description */

field twisted = [Q2..0];

twistedD = 'b'100 & twisted:0
# 'b'110 & twisted:4
# 'b'111 & twisted:6
# 'b'011 & twisted:7
# 'b'001 & twisted:3
# 'b'000 & twisted:1
# 'b'000 & twisted:2
# b'000 & twisted:5 ;

different. For example, on the first line, twisted:0 will generate a logic equation of
Q2 Q1+ QO. The expression will be TRUE (HIGH) only when Q2 Q1,and QOare all
LOW (i.e., equal to 000), which will cause 100 to be applied to the D inputs of the
flip-flops. In other words, this statement will cause the D inputs to the three FFs to
become 100 whenever the present state of the FFs is 000. The second through
eighth lines operate in the same manner. Verify for yourself that they accurately re-
flect the operation specified in Table 7-8.

m 1. What type of flip-flop is built into the GAL 16V8?

2. How does the CUPL compiler know to connect the OR gate output to the out-
put pin or the Q output of the flip-flop?
3. In Figure 7-60, what does the line 4’011 & twisted: 7 cause to happen?

PART 1T SUMMARY

1. A frequency counter is a circuit that uses binary counters to measure and display
the frequency of an incoming signal.

2. A digital clock circuit uses binary counters to keep track of and display the time
of day.

3. Numerous IC registers are available which can be classified according to whether
their inputs are parallel (all bits entered simultaneously), serial (one bit at a
time), or both. Likewise, registers can have outputs that are parallel (all bits avail-
able simultaneously) or serial (one bit at a time).
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4. A sequential logic system uses FFs, counters, and registers, along with logic
gates. Its outputs and sequence of operations depend on present and past inputs.

5. Troubleshooting a sequential logic system begins with observation of the system
operation, followed by analytical reasoning to determine the possible causes of
any malfunction, and finally test measurements to isolate the actual fault.

PART II IMPORTANT TERMS

frequency counter serial in/serial out sequential logic system
sampling interval parallel in/serial out equality operator
parallel in/parallel out serial in/parallel out

LI L1 1

LI
PROBLEMS

PART I

SECTIONS 7-1 AND 7-2

B 7-1.

B 72
B 73
D 74
75
7-6.
7-7.
N 78

Add another flip-flop, E, to the counter of Figure 7-1. The clock signal is an

8-MHz square wave.

(a) What will be the frequency at the E output? What will be the duty cycle of
this signal?

(b) Repeat (a) if the clock signal has a 20 percent duty cycle.

(c¢) What will be the frequency at the C output?

(d) What is the MOD number of this counter?

. Construct a binary counter that will convert a 64-kHz pulse signal into a 2-

kHz square wave.

. Assume that a five-bit binary counter starts in the 00000 state. What will be the

count after 144 input pulses?

. Use J-K flip-flops and any other necessary logic to construct a MOD-24 asyn-

chronous counter.

. Draw the waveforms for all the FFs in the decade counter of Figure 7-6(b) in

response to a 1-kHz clock frequency. Show any glitches that might appear on
any of the FF outputs. Determine the frequency at the D output.

Repeat Problem 7-5 for the counter of Figure 7-6(a).

Change the inputs to the NAND gate of Figure 7-7 so that the counter divides
the frequency by 50. Repeat for a frequency division of 100.

. A counter or a group of counters is often used to divide a high-frequency

clock signal down to a lower-frequency output. When these counters are bi-
nary counters (i.e., they count in the binary sequence), the output will not be
a symmetrical square wave if the binary sequence has been shortened in or-
der to produce the desired MOD number. For example, refer to the C wave-
form of the MOD-6 counter in Figure 7-4.

When a counter is being used only for frequency division, it is not neces-
sary that it count in a binary sequence as long as it has the desired MOD num-
ber. A symmetrical square-wave output can be obtained for any even MOD
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FIGURE 761 Problem 7-8.

number by breaking the MOD number into the product of two MOD num-

bers, one of which is a power of 2. For example, a MOD-6 counter can be

formed from a MOD-3 counter and MOD-2 counter as shown in Figure 7-61.
Here flip-flops 4 and B and the NAND gate make up the MOD-3 counter,

whose B output has one-third the frequency of the input pulses. This B out-

put is connected to the input of flip-flop C, which is acting as a MOD-2

counter to divide the frequency down to one-sixth the frequency of the input

pulses.

(@) Assume that all FFs are initially LOW, and sketch the waveforms at each
FF output for 12 cycles of the input.

(b) Construct the state transition diagram, and show that it is not a normal bi-
nary sequence.

SECTION 7-3
B 79. In Figure 7-8, connect Qy to CP; and MRy, and connect Qs to MR,. If 180-kHz
pulses are appled to CP,, determine the following: (a) the count sequence; (b)
MOD number; (¢) frequency at Q.
D 7-10. Show how a 74L5§293 counter can be used to produce a 1.2-kpps output from
an 18-kpps input.
D 7-11. Show how two 74LS293s can be connected to divide an input frequency by 60
while producing a symmetrical square-wave output.
7-12. Determine the frequency at output X in Figure 7-62.
7-13. (@) Add the necessary logic to a 74HC4024 so that it operates as a MOD-100
counter.
(b) Use 74HC4024s and any necessary logic to convert a 10-kpps signal to 1

PPs.

wie)

SECTION 7-4
B 7-14. (&) Draw the diagram for a MOD-16 down counter.
(b) Construct the state transition diagram.
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C_P1 Z1 C_F’1 72
—"10p Endiibg N
él—:’o 7415293 CT:,O 7415293
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MR; MR, Q; Q, Q; Qp MR; MR, Q3 Q, O Qq
- f——3 Output X

FIGURE 7-62 Problems 7-12 and 7-64.

(c) If the counter is initially in the 0110 state, what state will it be in after 37
clock pulses?
7-15. Refer to the counter shown in Figure 7-63. How can you tell that it is a down
counter? It has been modified so that it does not count through the entire bi-
nary sequence 111 to 000. Determine the actual sequence it counts through.

—{c J B J A J
CLK <O CLK <O— CLK O—e igligligl
c K B cr K A clr K

All J, K inputs are HIGH
FIGURE 7-63 Problem 7-15.

SECTION 7-5
7-16. A four-bit ripple counter is driven by a 20-MHz clock signal. Draw the wave-
forms at the output of each FF if each FF has #,q = 20 ns. Determine which
counter states, if any, will not occur because of the propagation delays.
7-17. (@) What is the maximum clock frequency that can be used with the counter
of Problem 7-16?
(b) What would £, be if the counter were expanded to six bits?

SECTIONS 7-6 AND 7-7

B 7-18. () Draw the circuit diagram for a MOD-64 parallel counter.

(b) Determine fp,, for this counter if each FF has #,q = 20 ns and each gate
has 7,4 = 10 ns.

C 7-19. Figure 7-64 shows a four-bit parallel counter which is designed so that it does

not sequence through the entire 16 binary states. Analyze its operation by de-
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FIGURE 7-64 Problem 7-19.
termining its counting sequence, and then draw the waveforms at each FF
output. (See Section 5-23 to review the analysis procedure.) Assume that all
FFs are initially in the O state.
7-20. Simplify the counter of Figure 7-18(a) so that it becomes a MOD-8 synchro-
nous down counter.
C,T 7-21. Describe how the up/down counter of Figure 7-18 would operate if the IN-
VERTER output were stuck HIGH.
SECTIONS 7-8 AND 7-9
B 7-22. Modify the circuit of Figure 7-22 so that the counter is preset to 0101 and
counts down to 0000. Draw the waveforms at each FF output and at the 7TCp,
output for 10 clock cycles.
N, C 7-23. Figure 7-65 shows how a presettable down counter can be used in a pro-

grammable timer circuit. The input clock frequency is an accurate 1 Hz de-

rived from the 60-Hz line frequency after division by 60. Switches S1 to S4 are

used to preset the counter to a desired starting count when a momentary
pulse is applied to PL. The timer operation is initiated by depressing the

START pushbutton switch. Flip-flop Z is used to eliminate effects of bounce in

the START switch. The OS is used to provide a very narrow pulse to the PL in-

put. The output of flip-flop X will be a waveform that goes HIGH for a num-
ber of seconds equal to the number set on the switches.

(a) Assume that all FFs and the counter are in the O state, and analyze and ex-
plain the circuit operation, showing waveforms when necessary, for the
case where S1 and S4 are LOW and S2 and S3 are HIGH. Be sure to ex-
plain the function of flip-flop X.

(b) Why can’t the timer output be taken at the 7Cy, output?

(©) Why can’t the START switch be used to trigger the OS directly?

(d) What will happen if the START switch is held down too long? Add the
necessary logic needed to ensure that holding the START switch down
will not affect the timer operation.



402 o

Chapter 7 / Counters and Registers

+5V

SwWi1 SW2 SW3 SwW4

= = = Responds to
posmve transitions
Ps P, P, Pg
1Hz

JLIL

PL 74HC193
—O Presettable CPD< I
down counter
MR CPy<t-o 1
1 Co -3
) J CLR
*—J X —e
—0OpcLk
K X
Y |— z = |
0s = =
< CLK O——
Y z
SET K —1. +5V
T, =100ns Timer
Start output
switch

. .
R

FIGURE 7-65 Problems 7-23, 7-63, and 7-68.

7-24. Modify the circuit of Figure 7-24 so that it functions as a MOD-10 counter. The
frequency at the Qj output should be one-tenth the frequency of the CPp, in-
put. Draw the waveforms at Qs, O», Q1, Qo, and TCp.

7-25. Change the parallel data inputs in Figure 7-24 to 1001. Draw the waveforms at
O3, O, O1, Oy, and TCp. What is the MOD number?

7-26. Draw the waveforms for the input signals required to perform the following
sequence of operations in the circuit of Figure 7-25: (1) clear the count to 0;
(2) count up to 24,4; (3) preset the count to 76; (4) count down to 0.

SECTION 7-10
7-27. Figure 7-66 shows the IEEE/ANSI symbol for a 7490 or 74290 counter IC. Ex-
amine the symbol and determine the following.
(@ The overall MOD number
(b) The function performed by the MR inputs
() The function performed by the MS inputs
(d) Is this an up counter or a down counter?
(e) How would you connect it to function as a BCD counter? (Refer to the
data sheet on the CD-ROM.)
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(® How would you connect it to divide the clock frequency by 10 and pro-
duce a symmetrical square wave?

The 74192 counter IC operates exactly like the 74193 except for the following

differences:

® The 74192 is a BCD counter that either counts up from 0 to 9 or counts
down from 9 to 0.

® The TCy output is activated when the count is 9 and the CPy input is
LOW.

Modify the IEEE/ANSI symbol of Figure 7-26 so that it represents the 74192.

SECTIONS 7-11 AND 7-12

7-29.

7-30.

7-31.

7-32.

7-33.

Draw the gates necessary to decode all of the states of a MOD-16 counter us-

ing active-LOW outputs.

Draw the AND gates necessary to decode the 10 states of the BCD counter of

Figure 7-6(b).

Figure 7-67 shows a ripple counter being used to help generate control wave-

forms. Control waveforms 1 and 2 could be used for many purposes, includ-

ing control of motors, solenoids, valves, and heaters. Determine the control

waveforms, assuming that all FFs are initially LOW. Ignore decoding glitches.

Assume that clock frequency = 1 kpps.

Draw the complete waveforms at the output of the decoding gates of a MOD-

16 ripple counter, including any glitches or spikes that can occur due to the FF

delays. Why are the gates that are decoding for even numbers the only ones

that have glitches?

The circuit of Figure 7-67 might malfunction because of glitches at the outputs

of the decoding NAND gates.

(@) Determine at what point(s) the glitches can cause erroneous operation.

(b) What are two ways that can be used to eliminate the possibility of erro-
neous operation?

SECTION 7-13

7-34.

7-35.

How many FFs are used in Figure 7-32? Indicate the states of each of these FFs
after 795 pulses have occurred once the counters have been cleared.

How many cascaded BCD counters are needed to be able to count up to
8000? How many FFs does this require? Compare this with the number of FFs
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FIGURE 7-67 Problem 7-31.

required for a normal binary counter to count up to 8000. Since it uses more
FFs, why is the cascaded BCD method used?

SECTION 7-14

7-36.

7-37.

7-38.

(@) Design a synchronous counter that has the following sequence: 000, 010,
101, 110, and repeat. The undesired (unused) states 001, 011, 100, and
111 must always go to 000 on the NEXT clock pulse.

(b) Redesign the counter of part (a) without any requirement on the unused
states; that is, their NEXT states can be don’t cares. Compare with the de-
sign from (a).

Use the synchronous counter design procedure to design a four-bit synchro-

nous down counter that counts through all states from 1111 down to 0000. Com-

pare your result with the synchronous down counter described in Section 7-7.

Using a procedure similar to the one followed in the design of the counter to

drive the stepper motor (Figure 7-39), design a three-bit synchronous counter

that will count up or count down under the control of Direction input, D. It

should count up when D = 1 and count down when D = 0. (Hint: This is a

Jfour-variable problem.)

Compare your final circuit to the synchronous up/down counter of Fig-

ure 7-18.

SECTION 7-15

7-39.
7-40.

7-41.

Draw the diagram for a five-bit ring counter using J-K flip-flops.

Combine the ring counter of Problem 7-39 with a single J-K flip-flop to pro-
duce a MOD-10 counter. Determine the sequence of states for this counter.
This is an example of a decade counter that is not a BCD counter.

Draw the diagram for a MOD-10 Johnson counter using J-K flip-flops, and de-
termine its counting sequence. Draw the decoding circuit needed to decode
each of the 10 states. This is another example of a decade counter that is not
a BCD counter.
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FIGURE 7-68 Problem 7-42.

PART 11

7-42.

7-43.

Determine the frequency of the pulses at points w, x, ¥, and z in the circuit of

Figure 7-68.

(a) A group of eight display lights on a pinball machine are controlled by the
FFs of an eight-bit ring counter that is being clocked by a 2-pps signal.
Describe the visual effect that is produced.

(b) Repeat for an eight-bit Johnson counter.

SECTION 7-16

7-44.

7-45.

As pointed out in the text, the frequency counter of Figure 7-46 has the

disadvantage that the display shows all of the counter operations (reset-

ting, counting, holding) and would therefore be confusing, if not unread-

able. This can be overcome by the addition of buffer registers to store the

contents of the counter at the end of each counting interval (4 to # in Figure

7-46) and hold it for display until the end of the next counting inter-

val (& to #). Figure 7-69 shows this modification. A buffer register consisting

of four D flip-flops has been inserted between each BCD counter and its de-

coder/display unit.

(@) Analyze this circuit and describe its operation, particularly the transferring
of data from the counters to the display.

(b) What would you see on a three-digit display if the unknown frequency
were constant at 2570 pps and the sample interval were 0.1 s?

(©) What would you see on this display if the unknown frequency were sud-
denly changed to 3230 pps?

The frequency counter of Figure 7-69 uses three BCD counters and a sampling

interval of 100 us. Determine the readings on the three frequency-counter dis-

plays for each of the following input frequencies.

@) 220 kpps

() 4.5 Mpps

(© 750 pps

SECTION 7-17

D 746

D 747

D 748.

Design the complete circuit for the SECONDS section of the digital clock cir-
cuit of Figure 7-47. Use a 74L5293 for the MOD-6 and a 74L5290 for the BCD.
(See the TTL data manual or CD ROM for 74LS290 information.)

The digital clock of Figure 7-47 must have some means for manually setting
the HOURS and MINUTES sections to the correct starting time. For example,
this can be done by switching the 1-pps signal into the input of the MINUTES
section when a SET MINUTES pushbutton is activated. A similar operation can
be done with a SET HOURS pushbutton. Design the necessary logic to pro-
vide this capability using two pushbutton switches.

Modify the HOURS section of the digital clock (Figure 7-48) so that it counts
and displays military time (i.e., 00 to 23 hours).
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FIGURE 769 Problems 7-44 and 7-49.

SECTIONS 7-19 AND 7-20

7-49.

7-50.

7-51.

7-52.

Modify the frequency counter of Figure 7-69 so that it uses 74ALS174 ICs for
buffer registers. Assume that the counter section contains three BCD counters
and a three-digit display.
In Example 7-20 we saw how a 74ALS174 can be wired as a shift register.
Show how to connect the 74ALS174 (and any necessary logic) so that it oper-
ates as a Johnson counter. What is its MOD number?
Suppose a 74ALS174 is connected as follows:

MR = HIGH; Qs > Dy; Qs = Dy; Qs > Do

Ds = Ds = HIGH; D; = LOW
Assume all FFs have a zero hold-time and are initially LOW.
(a) Determine the states of each FF after a single pulse is applied to CP.
(b) Repeat for a second clock pulse.
Consider the situation depicted by the waveforms in Figure 7-52. If Ds goes
LOW just prior to 47, when will Qg3 go LOW?
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7-53.

Show how the 4731B chip can be connected as a 256-bit shift register.

SECTIONS 7-21 AND 7-22

C,D 754

Modify the circuit of Figure 7-55 so that the INVERTER output is connected to

the A4 input instead of to MR.

(a) Draw the waveforms at each FF output in response to the input wave-
forms shown in Figure 7-70.

(b) Add the necessary logic to produce a timing-signal output that goes HIGH
only during time intervals ¢ to %, and # to &,

(c) Add the necessary logic to produce a timing signal that goes LOW only
during the interval # to %.

(I R Y T B
[ N N
| ] | | [
o
| | | | | | | |

t W L 13 14 5 1§ 13 tg tg o Yy Lz N3z by Yy g

FIGURE 7-70 Problem 7-54.

7-55.

N 7-56.

A 74HC165 is connected as shown in Figure 7-71. Assume that prior to %,

pulses have been applied to CP, and the SH/LD input has been held HIGH

for a long time. Draw the Q, waveform in response to the CP and SH/LD

waveforms beginning at &,

While examining the schematic for a piece of equipment, a technician or an

engineer will often come across an IC that is unfamiliar. In such cases, it is of-

ten necessary to consult the manufacturer’s IC data book for specifications on

the device. The information on the IC data sheets is always complete, but it is

sometimes difficult to understand, especially by someone with very little ex-

perience. This problem will give you practice in obtaining information about

a fairly complex IC—the 74194 bidirectional universal shift register. Consult

the CD ROM or your IC data book to answer the following questions. Support

your answers.

(@ Is the CLR input asynchronous or synchronous?

(b) True or false: When CLK is LOW, the S, and S; levels have no effect on the
register.

(©) Assume the following conditions:

Q4Q50c0p=1011
ABCD=0110

CIR = 1
SR SER = 0
SL SER = 1

If S =0 and S, = 1, what will the register outputs be after one CLK
pulse? After two CLK pulses? After three? After four?

(d) Use the same conditions except S = 1, §; = 0, and repeat part (c).

(e) Repeat part (¢) with § = §; = 1.

® Repeat part () with § = §; = 0.

(8 Use the same conditions as in part (¢) except assume that output Qy is
connected to SL SER. What will be the register outputs after four CLK
pulses?
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FIGURE 7-71 Problem 7-55.

(h) Show how to connect this IC to function as a ring counter that counts
through the following Q, Qs Oc Op sequence: 0001, 0010, 0100, 1000,
and repeat.

SECTION 7-24

7-57. A technician tests the counter of Figure 7-57(a) by applying a low-frequency
clock signal and monitoring the FF outputs on indicator LEDs. He observes a
repetitive sequence indicated by the LEDs (Table 7-9). What are the possible
reasons why the counter is not counting properly?

7-58. Refer to the digital clock circuit of Figures 7-47 and 7-48. A technician testing
the circuit observes that the SECONDS and MINUTES sections count properly,
but the HOURS section counts as follows: 01, 02, 03, 04, 05, 06, 07, 08, 09, 10,
11, 12, 11, 12, 11, 12, . . . . What is the probable cause of the malfunction?

7-59. A technician tests the digital clock circuit (Figures 7-47 and 7-48) and observes
that the HOURS section does not count and the MINUTES section counts from

TABLE 7-9
S e e S
0 0 0 0 ¢—
0 0 0 1
0 0 1 0
0 0 1 1 recycle and
0 1 0 0 repeat
0 1 0 1 i
0 1 1 0
0 1 1 1
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TABLE 7-10 — -
SI  S2 S$3 5S4  Timer Outpui(s)
5V 0V 0V 0V 10
oV 0V 5V 5V 3
5V 0V SV 5V 11
5V 5V 5V 0V 14
oV 5V 0V 5V 7
5V 5V 0V 0V 14

7-60.

7-61.

7-62.

7-63.

7-64.

00 to 39, and then recycles to 00 and repeats. What are the possible causes of

this incorrect behavior?

Refer to the modified frequency counter of Figure 7-69. Assume that there are

three BCD counter stages with associated buffer registers. The sample interval

is set at 1 s, and the unknown frequency is 125 pps. Describe what will ap-

pear on the display for each of the following circuit faults.

(@) An open connection at the top input of the AND gate

(b) A burned-out resistor Ry

A technician tests the frequency counter of Figure 7-69 using a sample inter-

val of 1 s and an unknown frequency of 125 pps. She expects to see a display

of 125 but instead sees the display changing every few seconds as follows:

125, 250, 375, 500, 625, 750, 875, 000, 125, 250, . . . . What can be the cause

of this malfunction?

Refer to the up/down counter of Figure 7-18. Describe how each of the fol-

lowing circuit faults will affect the count-up and count-down operations.

(a) The AND gate 4 output is internally shorted to V.

(b) A solder bridge is shorting the AND gate 1 output to the AND gate 3 out-
put.

A technician runs a test on the timer circuit of Figure 7-65 and records the re-

sults shown in Table 7-10. Examine the recorded data and determine the pos-

sible causes of the faulty operation.

A technician wires up the counter circuit of Figure 7-62. He applies an accurate

8.64-kpps signal to the input and measures a frequency of 54 pps at X instead

of the expected 60 pps. What is the most probable wiring error that he made?

SECTION 7-25

7-65.

7-66.

Write the CUPL file to create the counter described in Figure 7-33 using
Boolean equations.

Write the CUPL file to create the counter described in Figure 7-33 using the
equality operator.

DRILL QUESTION

7-67.

For each of the following statements, indicate the type(s) of counter being de-
scribed.

(a) Each FF is clocked at the same time.

(b) Each FF divides the frequency at its CLK input by 2.

(© The counting sequence is 111, 110, 101, 100, 011, 010, 001, 000.

(d) The counter has 10 distinct states.

() The total switching delay is the sum of the individual FFs’ delays.

(® This counter requires no decoding logic.
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(8 The MOD number is always twice the number of FFs.

(h) This counter divides the input frequency by its MOD number.

(D) This counter can begin its counting sequence at any desired starting state.
() This counter can count in either direction.

(k) Can suffer from decoding glitches.

(@ Counts from 0 to 99.

(m) Can be designed to count through arbitrary sequences by determining
logic needed at each flip-flop’s Jand K input.

MICROCOMPUTER APPLICATION
C,D 7-68. A microprocessor that is used in a control application must often control the
timing of external events such as the turning on and off of devices such as so-
lenoids, motors, and relays. Such actions can be timed using software by
repetitively executing a program loop a specific number of times. This, how-
ever, places a heavy burden on the MPU, since it can’t do anything else while
it is executing the loop over and over. For this reason, most timed intervals are
usually generated by hardware that is under control of the MPU. In other
words, the MPU will send data to the hardware to tell it how long a time in-

terval to generate.

In Problem 7-23 we saw how the 74HC193 IC could be used in a timer
circuit (Figure 7-65) to generate accurate time intervals corresponding to the
binary data from four switches. This circuit can be modified so that the binary
data come from an MPU instead of the switches. In Section 5-20 we saw how
an MPU could transfer data to an external device using its address, data, and
clock outputs (Figure 5-48).

Show how to combine these two circuits so that the timer output X will
generate a HIGH level for a time interval (in seconds) equal to the binary
number that the MPU presets into the 74HC193 counter. You can eliminate
any circuitry that is not needed. Assume that the MPU’s CP signal is a 1-MHz
square wave. Remember that PL is an asynchronous input.

ANSWERS TO SECTION REVIEW QUESTIONS

PART 1
SECTION 7-1
1. False 2. 0000 3. 128

SECTION 7-2

1. D,C and 4
distinct states

2. True, since a BCD counter has 10
3. SkHz

SECTION 7-3

1. 250 Hz 2. fin/60 3. 4096 4. The counter
is MOD-64 and divides the frequency by 64.

5. Qs Os, Os Os

SECTION 7-4

1. In an up counter, the count is increased by 1 with
each clock pulse; in a down counter, the count is
decreased by 1 with each pulse. 2. The inverted
output of each FF is connected to the CLK input of the
following FF.

SECTION 7-5

1. Each FF adds its propagation delay to the total
counter delay in response to a clock pulse.

2. MOD-256

SECTION 7-6

1. Can operate at higher clock frequencies and has
more complex circuitry 2. Six FFs and four AND
gates 3. ABCDE

SECTION 7-8

1. It can be preset to any desired starting count.

2. Asynchronous presetting is independent of the clock
input, while synchronous presetting occurs on the active
edge of the clock signal.

SECTION 7-9

1. When PI is pulsed LOW, the counter is preset to the
binary number present at inputs P, to Ps. 2. A HIGH
at MR overrides all other inputs to reset the counter to
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0000. 3. True 5. 0to

65,535

4. 1, 1, 0, respectively

SECTION 7-10

1. See appropriate text. 2. (@) Up-counter
operation. (b) This input is ANDed with any other
input or output that has a “4” in its label. (©) This
input controls the effect of any inputs that have “5” in
their label. (d) Data input that is controlled by input
labeled Cs5.

SECTION 7-11
1. Sixty-four 2. A six-input NAND gate with inputs
A B, C D, E and F

SECTION 7-12

1. The glitches would be caused by the FFs’ changing
states one at a time during counter state transitions.

2. The strobe signal inhibits the decoding gates until all
FFs have completed their transitions.

SECTION 7-14

1. See text. 2. It shows the necessary levels at Jand
K to produce every possible FF state transition. 3. It
shows the necessary levels at each flip-flop’s Jand K
input to produce the counter’s state transitions.

4. True

SECTION 7-15

1. Ring counter 2. Johnson counter 3. The
inverted output of the last FF is connected to the input
of the first FF. 4. (@) False () True (©) True
5. Sixteen; eight

SECTION 7-16

1. 1ms 2. Counter cleared; counter counts pulses

during sample interval; counter stops and holds count

for display. 3. A ring counter uses more FFs than a
Johnson counter.

SECTION 7-17

1. Pulse shaper, frequency divider, seconds counter and
display, minutes counter and display, hours counter and
display 2. To change the NGT from the MINUTES
section to a PGT needed by the 74192

SECTION 7-18 TO SECTION 7-22

1. Parallel in/serial out 2. True 3. Serial
in/parallel out 4. Serial in/serial out 5. The
74165 uses asynchronous parallel data transfer; the
74174 uses synchronous. 6. A HIGH prevents
shifting on CP.

SECTION 7-23
1. It separates the two indicated functions performed by
that input. 2. SRG 64

SECTION 7-25

1. D flip-flops 2. If the equation is written with a .D
extension, the compiler will connect the flip-flop to the
output pin. Otherwise, it will connect the OR gate
output. 3. Will make twisted.D = 011 whenever the
present state of twisted is 111 (7).
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B OBJECTIVES

Upon completion of this chapter, you will be able to:

B Read and understand digital IC terminology as specified in manufacturers’ data

sheets.

Compare the characteristics of standard TTL and the various TTL series.

Determine the fan-out for a particular logic device.

Use logic devices with open-collector outputs.

Analyze circuits containing tristate devices.

Compare the characteristics of the various CMOS series.

Analyze circuits that use a CMOS bilateral switch to allow a digital system to

control analog signals.

Describe the major characteristics of and differences among TTL, ECL, MOS,

and CMOS logic families.

® (Cite and implement the various considerations that are required when interfac-
ing digital circuits from different logic families.

B Use voltage comparators to allow a digital system to be controlled by analog sig-
nals.

B Use a logic pulser and a current tracer as digital circuit troubleshooting
tools.

B INTRODUCTION

As we described in Chapter 4, digital IC technology has advanced rapidly from
small-scale integration (SSI), with fewer than 12 gates per chip; through medium-
scale integration (MSI), with 12 to 99 equivalent gates per chip; on to large-scale
and very large-scale integration (LSI and VLSI), which can have tens of thousands
of gates per chip; and, most recently, to ULSI with over 100,000 gates per chip,
and GSI with one million or more gates.

Most of the reasons that modern digital systems use integrated circuits are ob-
vious. ICs pack a lot more circuitry in a small package, so that the overall size of
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almost any digital system is reduced. The cost is dramatically reduced because of
the economies of mass-producing large volumes of similar devices. Some of the
other advantages are not so apparent.

ICs have made digital systems more reliable by reducing the number of exter-
nal interconnections from one device to another. Before we had ICs, every circuit
connection was from one discrete component (transistor, diode, resistor, etc.) to
another. Now most of the connections are internal to the ICs, where they are pro-
tected from poor soldering, breaks or shorts in connecting paths on a circuit
board, and other physical problems. ICs have also drastically reduced the amount
of electrical power needed to perform a given function, since their miniature cir-
cuitry typically requires less power than their discrete counterparts. In addition to
the savings in power-supply costs, this reduction in power has also meant that a
system does not require as much cooling.

There are some things that ICs cannot do. They cannot handle very large cur-
rents or voltages because the heat generated in such small spaces would cause
temperatures to rise beyond acceptable limits. In addition, ICs cannot easily imple-
ment certain electrical devices such as inductors, transformers, and large capaci-
tors. For these reasons, ICs are principally used to perform low-power circuit op-
erations that are commonly called information processing. The operations that re-
quire high power levels or devices that cannot be integrated are still handled by
discrete components.

With the widespread use of ICs comes the necessity to know and understand
the electrical characteristics of the most common IC logic families. Remember that
the various logic families differ in the major components that they use in their cir-
cuitry. TTL and ECL use bipolar transistors as their major circuit element; PMOS,
NMOS, and CMOS use unipolar MOSFET transistors as their principal component.
In this chapter we will present the important characteristics of each of these IC
families and their subfamilies. The most important point is understanding the na-
ture of the input circuitry and output circuitry for each logic family. Once these are
understood, you will be much better prepared to do analysis, troubleshooting, and
some design of digital circuits that contain any combination of IC families. We will
study the inner workings of devices in each family with the simplest circuitry that
conveys the critical characteristics of all members of the family.

[ S I S,
- L L L .

LI

8-1 DIGITAL IC TERMINOLOGY

Although there are many digital IC manufacturers, much of the nomenclature and
terminology is fairly standardized. The most useful terms are defined and discussed
below.
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FIGURE 81 Currents and voltages in the two logic states.

Current and Voltage Parameters (see Figure 8-1)

B Viy(min)—High-Level Input Voltage. The minimum voltage level required for a
-logical 1 at an input. Any voltage below this level will not be accepted as a HIGH
by the logic circuit.

B V,(max)—Low-Level Input Voltage. The maximum voltage level required for a
logic 0 at an input. Any voltage above this level will not be accepted as a LOW
by the logic circuit.

B Vop(min)—High-Level Output Voltage. The minimum voltage level at a logic cir-
cuit output in the logical 1 state under defined load conditions.

BV, (max)—Low-Level Output Voltage. The maximum voltage level at a logic cir-
cuit output in the logical 0 state under defined load conditions.

B [,—High-Level Input Current. The current that flows into an input when a spec-
ified high-level voltage is applied to that input.

B [, —Low-Level Input Current. The current that flows into an input when a speci-
fied low-level voltage is applied to that input.

B J,y—High-Level Output Current. The current that flows from an output in the
logical 1 state under specified load conditions.

B /5, —Low-Level Output Current. The current that flows from an output in the log-
ical 0 state under specified load conditions.

Note: The actual current directions may be opposite to those shown, depending
on the logic family. All descriptions of current flow in this text refer to conventional
current flow (from higher potential to lower potential). In keeping with the con-
ventions of most data books, current flowing into a node or device is considered
positive, and current flowing out of a node or device is considered negative.

Fan-Out

In general, a logic-circuit output is required to drive several logic inputs. Sometimes
all ICs in the digital system are from the same logic family, but many systems have
a mix of various logic families. The fan-out (also called loading factor) is defined
as the maximum number of logic inputs that an output can drive reliably. For ex-
ample, a logic gate that is specified to have a fan-out of 10 can drive 10 logic inputs.
If this number is exceeded, the output logic-level voltages cannot be guaranteed.
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FIGURE 82 Propagation delays.
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Obviously, fan-out depends on the nature of the input devices that are connected to
an output. Unless a different logic family is specified as the load device, fan-out is
assumed to refer to load devices of the same family as the driving output.

Propagation Delays

A logic signal always experiences a delay in going through a circuit. The two prop-
agation delay times are defined as follows:

B 7y 4. Delay time in going from logical 0 to logical 1 state (LOW to HIGH)
B fpy . Delay time in going from logical 1 to logical 0 state (HIGH to LOW)

Figure 8-2 illustrates these propagation delays for an INVERTER. Note that #yy; is the
delay in the output’s response as it goes from HIGH to LOW. It is measured be-
tween the 50 percent points on the input and output transitions. The #y value is
the delay in the output’s response as it goes from LOW to HIGH.

In general, #yy and %y are not the same value, and both will vary depending
on capacitive loading conditions. The values of propagation times are used as a
measure of the relative speed of logic circuits. For example, a logic circuit with val-
ues of 10 ns is a faster logic circuit than one with values of 20 ns under specified
load conditions.

Power Requirements

Every IC requires a certain amount of electrical power to operate. This power is
supplied by one or more power-supply voltages connected to the power pin(s) on
the chip. Usually there is only one power-supply terminal on the chip, and it is la-
beled Vg (for TTL) or Vp, (for MOS devices).

The amount of power that an IC requires is determined by the current, I, that
it draws from the Vi supply, and the actual power is the product I X V¢ For
many ICs the current drawn from the supply will vary depending on the logic states
of the circuits on the chip. For example, Figure 8-3(a) shows a NAND chip where
all of the gate outputs are HIGH. The current drain on the V¢ supply for this case
is called I.y. Likewise, Figure 8-3(b) shows the current when all of the gate out-
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FIGURE 83  Iccy and Icct-

Section 8-1 / Digital IC Terminology ® 417

+Vee +Vee

N leen N lect

L.

—_—amo

B8
] :: [

L

—_—ao
[ X X ]
L 4 lr ]

b

—_—ao

ﬂr [ X ]

1
i

-
-
-

||}---

L

(a) (

puts are LOW. This current is called Io.;. The values are always measured with the
outputs open circuit (no load), since the size of the load would also have an effect
on Iocy.

In general, /ooy and I will be different values. The average current is com-
puted based on assuming that gate outputs will be LOW half the time and HIGH
half the time.

1 + I
Ielavg) = CcH : caL

This can be used to calculate average power dissipated as

Pplavg) = Io